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1 Introduction
PDEs with memory involve the past values of solutions. In the modeling, one physical quantity induces
time-delayed actions on others, and and a large number of such actions form memory (as a time integral).

Such models with memory are far from being well understood. We need to develop mathematical
methods to investigate new phenomena in the models, and then apply these methods to control problems.

2 Heat equations with memory in lower order terms
We begin with the following case that the memory is in the lower order term. Let Ω ⊂ Rn be a bounded
domain (with a C 2-boundary). Define

Af := −∆f , with its domain D(A) := H 2(Ω) ∩ H 1
0 (Ω).

Write y(·; y0) for the solution of the following heat equation with memory:y′(t) + Ay(t) +
∫ t

0
M (t − s)y(s)ds = 0, t > 0,

y(0) = y0 ∈ L2(Ω).

Formally, the model is heat + integral-type perturbation .

3 Hybrid parabolic-hyperbolic effect (see [1])
Let N ≥ 2 be an integer. Each solution y(·; y0) with y0 ∈ L2(Ω) has the following decomposition:

y(t; y0) =yp(t; y0) + yh(t; y0) + remainder, t ≥ 0.
where yh and yp are defined with explicit coefficients (pl)l≥1 and (hl)l≥1 (h1 = −M ):

yp(t; y0) :=e−tAy0 +
N−1∑
l=0

pl(t)A−l−1e−tAy0,

yh(t; y0) :=
N−1∑
l=1

hl(t)A−l−1y0.

Moreover,
∑

l≥1 |pl(t)| > 0 and
∑

l≥1 |hl(t)| > 0 for each t ≥ 0.

In the above decomposition, we have the following:
I the parabolic component yp(t; y0) ∈

⋂
k∈N

D(Ak) for each t > 0 (the infinite-order smoothing effect at

positive time);
I the hyperbolic component yh(·; y0) has the leading term −M (·)A−2y0, and holds the propagation of

singularities along the time direction. More precisely, ∀t0 > 0, ∀ x0 ∈ Ω,
yh(·; y0) 6∈ H s+4

loc (t0, x0) ⇔ y0 /∈ H s
loc(x0).

Here, H r
loc(p) means the space of functions each of which is in H r(Up) for an open neighborhood Up

of the point p.
This allows us to simply call it “wave with the null velocity” (or “static wave”). Characteristic lines:

{(x0, t) : t ≥ 0}, x0 ∈ Ω.
In summary, the model here behaves more like “heat” around the initial time, and more like
“wave” at positive time.

5 Application to observability (see [2])
Take a measurable subset Q ⊂ (0,+∞)× Ω as the observation set.

Moving observation condition

Let T > S ≥ 0. The triplet (Q, S ,T ) is said to
satisfy the moving observation condition (MOC for
simplicity) if

TΩ(Q, S ,T ) := ess-inf
x∈Ω

∫ T

S
χQ(t, x)dt > 0.

Here, χQ is the characteristic function of Q.
In plain language, the MOC says that each

characteristic line goes through the observation set
Q ∩

(
(S ,T )× Ω

)
within a lower-bounded elapsed

time. This is comparable to the well-known GCC for
observability of wave equations.

When T > S > 0, the triplet (Q, S ,T ) satisfies the MOC iff there is a C1 > 0 so that
1

C1
‖A−2y0‖L2(Ω) ≤

∫ T

S

∥∥χQ(t, ·)y(t; y0)
∥∥

L2(Ω)dt ≤ C1‖A−2y0‖L2(Ω), ∀ y0 ∈ L2(Ω).

When T > S = 0 and α > 1, the triplet (Q, S ,T ) satisfies the MOC iff there is a C2 > 0 so that
1

C2
‖A−2y0‖L2(Ω) ≤

∫ T

0

∥∥χQ(t, ·)y(t; y0)
∥∥

L2(Ω)t
αdt ≤ C2‖A−2y0‖L2(Ω), ∀ y0 ∈ L2(Ω)

(the equivalence does not hold any more for α ≤ 1).

6 Application to trajectory controllability (see [3])
Take a time-varying measurable subset Q ⊂ (0,+∞)× Ω as the “control region”. Write y(·; y0, u) for the
solution of the following heat equation with constant memory kernel:y′(t) + Ay(t) +

∫ t

0
y(s)ds = χQu, t > 0,

y(0) = y0 ∈ L2(Ω).
(1)

Here, u ∈ L1
loc([0,+∞);L2(Ω)) is the control.

Let p ∈ (1,+∞] and T > S ≥ 0. Then, the triplet (Q, S ,T ) satisfies the above MOC if and only if
system (1) has the null trajectory controllability after time T : for each y0 ∈ L2(Ω), there is a control
u ∈ Lp(R+;L2(Ω)) so that

y(t; y0, χ(S ,T )u) = 0, ∀ t ≥ T .

7 Summary
I Memory is a huge perturbation and brings a heavy influence on the nature of the model.
I Memory is “static waves” (with the null velocity). A solution always remembers its past singularities.
I The hyperbolic nature of the memory can help study control problems (such as the controllability and

observability problems).

4 Numerical simulations

Let Ω = (0, 1) and y0 = δ0.3. The
solution and its fourth derivative are
drawn in black.

The solution of the pure heat
equation with same initial data is drawn
in red.

The leading term in the hyperbolic
component is drawn in blue.

8 Open problems
Extensions for general memory kernels:
I Locally integrable memory kernel M ∈ L1

loc([0,+∞));
I Space-dependent memory kernel M = M (t, x) .

Extensions to more models with memory:
I Memory kernels in the principal part of the model:

(i) ∂ty −∆y −
∫ t

0 M (t − s)∆y(s)ds = 0;
(ii) ∂ty −

∫ t
0 M (t − s)∆y(s)ds = 0.

I Other equations with memory.

Applications to other problems:
I Other topics such as stabilization, optimal control problems and so

on.
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