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Introduction Main Results
This poster presents two main results from [1]: Theorem 1 (Simultaneous Controllability): Consider integers d, N, M > 1 and a
» We construct ReLU neural networks with fixed width and explicit parameters that da.taset {wi yitis CL R x ‘Ela o MY For_ L=2N+4M -1 .an-d N(W) = 2, there
achieve simultaneous controllability, ensuring the classification of any dataset with NV exist parameters YV and 5 such that the input-output map satisties:
points and M classes. SLOWE, BL 2) =y for every i € {1,... N},

» We establish a universal approximation result for L” functions using neural networks
with a fixed width, providing explicit estimates for the required depth (number of
layers) for the approximation.

Moreover, this result cannot be achieved with a width of 1.
Proof: The proof consists of 4 steps:

. Step 1 We define gblLl that projects d-dimensional points into 1-dimensional points.
In both cases, the network parameters are explicitly constructed.

Step 2 We define ngLQ that collapses points of the same class into a single point.

Multilayer Perceptron Step 3 We define ¢:* that sorts the data based on the labels.
We consider the following neural network architecture: Step 4 We define gbf‘l that maps the sorted data to their respective labels.
x" = a(W - x4 br), ke {l L} b2 (+) | o0 $5°(:)
) AR ) /2\ | o1 Z1 —

where L > 1, and {W}, b}, C R%+1>dk 5 R%+1 with dy > 1. Here, o is the RelLU T. . o 6 o 6 o5 i o~ o |®2 $—o—e oo
function o(x) = max{0,z} for v € R. If x € R? then: |@—3] = R = oo B R

o(x) =0 (z1,...,24) = (o(z1),...,0(za)) Finally, 9 = (¢ 0 ¢35 0 ¢, 0 ") satisfies simultaneous controllability.
The following diagram illustrates this discrete dynamical system: Theorem 2 (Universal Approximation Theorem for I”): Let 1 < p < 00, d > 1 be an

integer, and 2 C R a bounded domain. For any f € LP({);R.) and € > 0, there exist a
depth £ = L(¢) > 1 and parameters W* and B* such that the input-output map ¢*
with N(W) = d + 1 satisfies:

|65 OWE, B, ) — ()l om,) < =
Additionally, for all f(-) € W'P(Q:R,), we have:
L) < OOz o )

WLP(Q;R+
where C' is a positive constant independent of f and «.
Proof: Two-step approximation:

Denote by h*(x) = W}, - & + by, and consider the input-output map:
$Hx) = (Wi i}y %) = (0 0 hE 0+ 0.0 0 A1) (x).
Let W = {W,}1_, and B* = {b}+_,, and denote by:
NW) = max {di}

“" extend to C
]

C=(HhUQ,‘2
= =

ked{l,...,L}
the neural network width.
Main question: Let d, N, M > 1, and let {z;,y;};*;, CRYx {1,..., M} be a given | et
dataset. Does there exist L > 0 and (W*, BY) such that: ful) = Z fuxu(z), where fi = 1 / fz) dz
o (x;) =1y; foreveryic {1,... N}? HeH, ma(H) Ju

for each H € H;,. Then, there exists h; > 0 such that for all A < h{, we have

This is referred to as simultaneous controllability or finite sample memorization.
|f— fh||Lp(C;R+) < €/2. Next, we construct two neural networks such that:

Dynamics Interpretation

If W e R™2 and b € R, then A
HW,b)={z cR*: W -2 +b=0},
defines a hyperplane. —0—0—¢
W-x+b <0
® o(W-x+Db)
¢ /_\_g o o o We define ¢* = ¢, o ¢; and show that:
o o Y 1fn— |l omr,) =0 and || fr— ?bEHLP(Q,f;R+) <¢e/2.

W-x+b > 0 Finally, we deduce:

”f - (bEHLp(Q;IRg) < ||f — thLP(C;IR{+) + Hfh — ¢£HLP(C;R+) < €.

In the case where (wy, ws)! = W € R*** and (b1, by)! = b € R?, they define two
hyperplanes Hl(wl, bl) and HQ(”UJQ, bg) Remarks

» Our work is motivated by [2], where simultaneous controllability results
and the UAT were proven using a geometrical interpretation of NODEs.

» In [1], simultaneous controllability is also proven when labels are in R™,
as well as the universal approximation for functions in LP(€2; R™"). In
both cases, the parameters are explicitly characterized.

» The explicit parameters can be used for classification problems; see = I:'

Different regions are mapped to different locations, and one region collapses > The neural network width in Theorem 2 is near optimal. In [3], it was
to a single point. proven that the UAT does not hold for networks with a width less than d.
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