
Global Entropy Solutions to Isentropic Gas 
Flows in General Nozzles

Peng Qu1 , Jiahui Wang1 , Zhouping Xin2

1School of Mathematical Sciences, Fudan University, Shanghai, China
2The Institute of Mathematical Sciences, The Chinese University of Hong Kong, Shatin, N.T., 

Hong Kong, China

Introduction Key points
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⚫ We consider isentropic gas flows in general 
nozzles, which are governed by the quasi-one-
dimensional isentropic Euler system:

1  ൞

𝜕𝑡𝜌 + 𝜕𝑥 𝜌𝑣 = 𝑎(𝑥)𝜌𝑣, 

𝜕𝑡 𝜌𝑣 + 𝜕𝑥 𝜌𝑣2 + 𝑝 𝜌 = 𝑎(𝑥)𝜌𝑣2,

𝑡 = 0: 𝜌 = 𝜌0 𝑥 , 𝑣 = 𝑣0 𝑥 . 

⚫ In engineering, nozzles are useful in various areas, 
such as the modern rocket engine or the jet 
engine. 

⚫ In astrophysics, it is known that the  plasma flow 
from stars is closely related to the spherically 
symmetric flow.

⚫ From a mathematical point of view, the system is a 
typical quasi-linear hyperbolic balance law system.

⚫ Our aim is to prove the global existence of its 
entropy weak solutions with large data.

Motivations
⚫ We focus on the case where 𝑎 𝑥 ∈ 𝐿1 ℝ . In 

order to give the existence theorem, previous 
articles have proposed upper bound estimates:

a) In [1], it’s required
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.

b) In [2], it’s required
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 where 𝜃, 𝜇, 𝜎 are kinetic constants.

⚫ Our work no longer sets any a priori upper bound 
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Methods

Conclusion
As long as 

𝑎 𝑥 ∈ 𝑊1,∞ ℝ ∩ 𝐿1 ℝ ,

for any data 𝜌0, 𝑣0 ∈ 𝐿∞ ℝ , the system 𝟏  admits 
a global entropy weak solution. 

⚫ Compensated compactness framework is applied 
to complete the proof.

⚫ The vanishing viscosity method is used to construct 
the approximate solution.

⚫ New modified Riemann invariants and invariant 
regions are introduced.

⚫ Artificial 𝜀−viscosities are added to the 𝛿−flux 
approximation system as

(2)

𝜕𝑡𝜌 + 𝜕𝑥 𝜌𝑣 − 2𝛿𝑣 = 𝑎 𝑥 𝜌 − 2𝛿 𝑣 + 𝜀𝜕𝑥𝑥𝜌,

𝜕𝑡 𝜌𝑣 + 𝜕𝑥 𝜌𝑣2 − 2𝛿𝑣2 + ෤𝑝 𝜌, 𝛿  

= 𝑎 𝑥 𝜌 − 2𝛿 𝑣2 + 𝜀𝜕𝑥𝑥 𝜌𝑣 ,

𝑡 = 0: 𝜌 = 𝜌0 𝑥 + 2𝛿, 𝑣 = 𝑣0 𝑥 . 

⚫ Modified Riemann invariants are introduced as 

ǁ𝑧 = 𝑧 ∙ 𝑒
− 𝑥0׬

𝑥
𝑏 𝑦 𝑑𝑦

− 𝐾𝛿 ,

෥𝑤 = 𝑤 ∙ 𝑒
− 𝑥0׬

𝑥
𝑏 𝑦 𝑑𝑦

− 𝐾𝛿 .

⚫ Riemann invariants stay in the invariant region.

⚫ The approximate system (2)  shares the same 
entropy function with system (1). Furthermore, 
𝐻−1 compactness estimate for corresponding 
entropy-entropy flux pair holds.


