

Global Entropy Solutions to Isentropic Gas Flows in General Nozzles

Peng Qu¹, Jiahui Wang¹, Zhouping Xin²

¹School of Mathematical Sciences, Fudan University, Shanghai, China ²The Institute of Mathematical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China

Introduction

 We consider isentropic gas flows in general nozzles, which are governed by the quasi-onedimensional isentropic Euler system:

(1)
$$\begin{cases} \partial_t \rho + \partial_x (\rho v) = a(x) \rho v, \\ \partial_t (\rho v) + \partial_x (\rho v^2 + p(\rho)) = a(x) \rho v^2, \\ t = 0: \rho = \rho_0(x), v = v_0(x). \end{cases}$$

 In engineering, nozzles are useful in various areas, such as the modern rocket engine or the jet engine.

Key points

• Artificial ε -viscosities are added to the δ -flux approximation system as

(2)
$$\begin{cases} \partial_t \rho + \partial_x (\rho \nu - 2\delta \nu) = a(x)(\rho - 2\delta)\nu + \varepsilon \partial_{xx}\rho, \\ \partial_t (\rho \nu) + \partial_x (\rho \nu^2 - 2\delta \nu^2 + \tilde{p}(\rho, \delta)) \\ = a(x)(\rho - 2\delta)\nu^2 + \varepsilon \partial_{xx}(\rho \nu), \\ t = 0: \rho = \rho_0(x) + 2\delta, \nu = \nu_0(x). \end{cases}$$

- Modified Riemann invariants are introduced as $\tilde{z} = z \cdot e^{-\int_{x_0}^{x} b(y) dy} - K_{\delta},$ $\sim -\int_{x_0}^{x} b(y) dy = W$
- In astrophysics, it is known that the plasma flow from stars is closely related to the spherically symmetric flow.
- From a mathematical point of view, the system is a typical quasi-linear hyperbolic balance law system.
- Our aim is to prove the global existence of its entropy weak solutions with large data.

Motivations

• We focus on the case where $a(x) \in L^1(\mathbb{R})$. In order to give the existence theorem, previous articles have proposed upper bound estimates:

a) In [1], it's required

$$\|a(x)\|_{L^1} \leq \frac{1-\theta}{1+\theta}.$$

b) In [2], it's required

$$\max\left\{\int_0^\infty |a(x)| dx, \int_{-\infty}^0 |a(x)| dx\right\} \le \frac{\mu}{2} \ln \frac{1}{\sigma},$$

where θ , μ , σ are kinetic constants.

 Our work no longer sets any a priori upper bound on ||a(x)||_{L¹}.

$$w = w \cdot e^{-J_{\chi_0}} - K_{\delta}.$$

• Riemann invariants stay in the invariant region.

 The approximate system (2) shares the same entropy function with system (1). Furthermore, H⁻¹ compactness estimate for corresponding entropy-entropy flux pair holds.

Conclusion

As long as

 $a(x)\in W^{1,\infty}(\mathbb{R})\cap L^1(\mathbb{R}),$

for any data $\rho_0, v_0 \in L^{\infty}(\mathbb{R})$, the system (1) admits a global entropy weak solution.

Methods

- Compensated compactness framework is applied to complete the proof.
- The vanishing viscosity method is used to construct the approximate solution.
- New modified Riemann invariants and invariant regions are introduced.

References

[1] W.-T. Cao, F.-M. Huang, and D.-F. Yuan. Global entropy solutions to the gas flow in general nozzle[J]. SIAM J. Math. Anal., 51(4):3276–3297, 2019.

[2] N. Tsuge. Global entropy solutions to the compressible Euler equations in the isentropic nozzle flow for large data: Application of the generalized invariant regions and the modified Godunov scheme[J]. Nonlinear Anal. Real World Appl., 37:217–238, 2017.

[3] Y.-G. Lu. Some results for general systems of isentropic gas dynamics[J]. Diff. Equ., 43:130–138, 2007.

2024 Conference on Control, Inversion and Numerics for PDEs October 7th-10th, 2024, Fudan University