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1 Introduction
• We consider the isentropic compressible Euler-Maxwell system on the peri-

odic domain [0, T ]× T3 with T3 = [−π, π]3 and T ∈ (0,∞). The Cauchy
problem with initial condition can be expressed as follows:

∂tn + div m = 0,

∂tm + div

(
m⊗m

n

)
+∇p(n) = −nE −m× B,

∂tE −∇× B = m, divE = h(x)− n,

∂tB +∇× E = 0, divB = 0,

(n,m,E,B)|t=0 = (n0,m0, E0, B0).

• The Euler-Maxwell system is a hydrodynamic model used in plasma physics
to describe the motion of electrons under the influence of the corresponding
electromagnetic fields.

• We consider weak solutions (n,m,E,B) which are Hölder continuous in
space, for instance, for some constant C which is independent of t,

|m(t, x)−m(t, y)| ⩽ C|x− y|α, ∀x, y ∈ T3, ∀t ∈ [0, T ].

• We consider the entropy inequality as

∂t
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2n
+
|E|2 + |B|2

2
+ ne(n)

)

+ div

(
m

n

(
|m|2

2n
+ ne(n) + p(n)

)
+ E × B

)
⩽ 0.

2 Induction scheme
For a given n = n(t, x) ∈ C∞([T1, T2] × T3), h = h(x) ∈ C∞(T3) with

n(t, x) ⩾ ε0 for some positive constant ε0, and
∫
T3 n(t, x)dx =

∫
T3 h(x)dx

for all t, a tuple of smooth tensors (m,E,B, c, R, φ) is a dissipative Euler-
Maxwell-Reynolds flow as long as it solves the following system

∂tn + divm = 0,

∂tm + div

(
m⊗m

n

)
+∇p(n) + nE +m× B = div(n(R− c Id)),

∂tE −∇× B = m, divE = h(x)− n,

∂tB +∇× E = 0, divB = 0,
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(
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· ∇
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2
tr(R) + div((R− c Id)m) + div(nφ) + ∂tH.

Here H is the global energy loss, which satisfies H(0) = 0, ∂tH ⩽ 0.
• We construct a sequence of approximate solutions (dissipative Euler-

Maxwell-Reynolds flows), which converge to a weak solution of the Euler-
Maxwell system.

• At each step, we give a correction (m̃q, Ẽq, B̃q) = (mq+1 − mq, Eq+1 −
Eq, Bq+1 − Bq) to make the error (Rq, φq) get smaller which would con-
verge to zero (in Hölder space) as q goes to infinity.

• We could obtain the inductive estimates on (mq, Eq, Bq, Rq, φq).

3 Main Results
We prove two main theorems that imply the non-uniqueness of entropy so-

lutions in the Hölder class C
1
7− to the compressible Euler-Maxwell equations.

Theorem 1. For any 0 ⩽ β < 1/7, initial density n0 = n0(x) ∈ C∞(T3),
h = h(x) ∈ C∞(T3), and pressure p = p(n) ∈ C∞([ε0,∞)), where∫
T3 n0(x)dx =

∫
T3 h(x)dx, and ε0 is a positive constant such that

n0(x) ⩾ ε0, we can find infinitely many distinct entropy solutions,
n ∈ C∞([0, T ] × T3), m ∈ Cβ([0, T ] × T3), E ∈ C1,β([0, T ] × T3), and
B ∈ C1,β([0, T ]×T3), to the isentropic compressible Euler-Maxwell equa-
tions emanating from the same initial data and satisfying the energy
equation in the distributional sense.
Theorem 2. For any 0 ⩽ β < 1/7, initial density n0 = n0(x) ∈ C∞(T3),
h = h(x) ∈ C∞(T3), and pressure p = p(n) ∈ C∞([ε0,∞)), where∫
T3 n0(x)dx =

∫
T3 h(x)dx, and ε0 is a positive constant such that n0(x) ⩾

ε0, there is an entropy solution n ∈ C∞([0, T ]×T3), m ∈ Cβ([0, T ]×T3),
E ∈ C1,β([0, T ]× T3), and B ∈ C1,β([0, T ]× T3), to the isentropic com-
pressible Euler-Maxwell equations satisfying the entropy inequality strictly
in the distributional sense.

4 Methods and Challenges of the Proof
• The proof of our results relies on the convex integration scheme starting

from De Lellis-Székelyhidi. We adapt the convex integration scheme pro-
posed by De Lellis-Kwon [1] and Giri-Kwon [2] to the compressible Euler-
Maxwell system.

• We propose a new method of Mikado potential. We use the specially chosen
electromagnetic potentials to construct new building blocks ( ◦mk,

◦
Ek,

◦
Bk)

which satisfying the Maxwell equations and can be used to construct the
perturbation. In this way, we can not only express the solutions of the
Maxwell equations explicitly, but also use a special linear combination of
the main part of ◦

mk, denoted by ◦
mp,k, to construct the Mikado flows.

• Due to the constrain of the Maxwell equations and strong resonance be-
tween the electromagnetic fields may occur, we would find that for some
directions, a strong electromagnetic field can only lead to a weak fluid flow.
Then, the special type of Mikado flows will lose certain frequencies, that is,
the terms corresponding to certain frequency will be close to zero. If we use
the special Mikado potentials to construct m̃p, the low-frequency compo-
nents of m̃p⊗m̃p

n and |m̃p|m̃p

2n2
may vanish. To solve this, we would specially

choose the strength function ψ∗, which allows us to use the low-frequency
components of m̃p⊗m̃p

n and |m̃p|m̃p

2n2
to reduce the Reynolds error Rq and

current φq separately.
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