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Two neighbouring fields

Control: Dogs-Sheep Supervised Learning
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Neural di↵erential equations
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Standard computational practice
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Objectives

To open the black-box of Machine Learning with Control theoretical tools

Explainability Generalization

Robustness Complexity

Computational cost New ML methods
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Our recent contributions

E. Zuazua, Control and Machine Learning, SIAM News, October 2022

B. Geshkovski, E. Zuazua, Turnpike in optimal control of PDEs, ResNets,
and beyond, Acta Numer. 31 (2022), 135–263

D. Ruiz-Balet, E. Zuazua, Neural ODE control for classification,
approximation and transport, SIAM Review, to appear.
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Cybernetics, Norbert Wiener, 1948

The science of control and communication in animals and machines

Let n,m 2 N⇤ and T > 0 and consider the following linear
finite-dimensional system

x 0(t) = Ax(t) + Bu(t), t 2 (0,T ); x(0) = x0. (1)

In (1), A is a n ⇥ n real matrix, B is of dimensions n ⇥m and x0 is the
initial sate of the sytem in Rn. The function x : [0,T ] �! Rn represents
the state and u : [0,T ] �! Rm the control.
Can we control the state x of n components with only m controls, even if
n >> m?

Theorem

(1958, Rudolf Emil Kálmán (1930–2016 )) System (1) is controllable i↵

rank [B , AB , · · · ,An�1B] = n.
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An example: Nelson’s car.

Two controls su�ce to control a four-dimensional dynamical system.

E. Sontag, Mathematical control theory, 2nd ed.,Springer-Verlag,
NewYork,1998.
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Computational implementation (Y. Privat)
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Virtuoso solution
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The mathematical shepherd
R. Escobedo, A. Ibañez and E.Zuazua, Optimal strategies for driving a mobile agent in a
“guidance by repulsion”model, Communications in Nonlinear Science and Numerical
Simulation, 39 (2016), 58-72.
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Supervised learning

Goal: Find an approximation of a function f⇢ : Rd
! Rm from a dataset

�
~xi , ~yi

 N
i=1

⇢ Rd⇥N
⇥ Rm⇥N

drawn from an unknown probability measure ⇢ on Rd
⇥ Rm.

Classification: match points (images) to respective labels (cat, dog).
This is typically done training a neural network.

Enrique Zuazua (CoML) CoML 17 / 33



Residual neural networks

[1] K. He, X Zhang, S. Ren, J Sun, 2016: Deep residual learning for image recognition
[2] E. Weinan, 2017. A proposal on machine learning via dynamical systems.
[3] R. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud, 2018.
[4] E. Sontag, H. Sussmann, 1997.

For each item i = 1, ...,N:

ResNets: Residual Neural Networks

x
k+1

i = x
k
i + hAk�(wk

x
k
i + bk)

for k 2 {0, . . . ,Nlayers � 1}

NODEs: Neural Ordinary Di↵erential Equations

ẋi (t) = A(t)�(w(t)xi (t) + b(t))

for t 2 (0,T )

This constitutes a huge ensemble or simultaneous control problem.
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ResNets in action (Borjan Geshkovski)
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ResNets and the Rubik Cube

Nonlinearities are unusual in Mechanics: � is flat in half of the phase space.

We need to control many trajectories (one per item to be classified) with the

same control!

The very features of the activation function � allow achieving this

giant simultaneous control goal. The fact that � leaves half of the

phase space invariant while deforming the other one allows for

dynamics not encountered in mechanics, for which such kind of

simultaneous control property is unlikely.
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Classification by control

Theorem (Classification, Domènec Ruiz-Balet &EZ, 2021)

a

Consider the NODE with the ReLU as activation function. Then, in any
time horizon [0,T ], a finite arbitrary number of items can be driven to an
arbitrary number of open subsets of the Euclidean space corresponding to
its labels.

Controls are piecewise constant with a maximal finite number of
switches of the order of O(N). They also lie in BV .

The control time T > 0 can be made arbitrarily small (scaling).

The complexity of controls diminishes when initial data are structured
in clusters or the control requirement is relaxed.

aRelated results for smooth sigmoids using Lie brackets: A. Agrachev and A.
Sarychev, arXiv:2008.12702, (2020); Li, Q., Lin, T., & Shen, Z. (2022), JEMS.
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What is the ResNet doing? Basic control actions

ẋ(t) = w(t)�(a(t) · x(t) + b(t)).

b(t) induces a time-dependent translation of the Euclidean space. It plays an

important role to determine the center of the action of the sigmoid.

a(t) compresses, expands, and induces rotations in the euclidean space.

(a(t), b(t)) determine a hyperplane in the space, the equator, diving space

into the active and the inactive half-spaces.

w(t) determines the direction and intensity with which the flow will evolve

in the active hemisphere.

An intelligent piecewise constant choice of controls, by induction,

assures the needed simultaneous control property.
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Some canonical flows induced by nODE
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Classification by Control of ResNets: One step + Induction
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Complexity

||w✏||1  Per(�)✏�2d2
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Deep neuronal network (non-residual case)

Let L � 1 and the parameters {ak , bk}Lk=1
⇢ Rdk+1⇥dk ⇥ Rdk+1 with

dk � 1 for every k 2 {0, . . . , L� 1}.

Consider the discrete dynamics

x
k+1

= �(ak · xk + b
k
), k 2 {0, . . . , L� 1}.

Here � corresponds to the ReLU activation function, possibly interpreted
in a vector-valued form,

�
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Geometric analysis of dynamics I

If a 2 R1⇥2 and b 2 R then

H(a, b) = {x 2 R2
: a · x + b = 0},

define a hyperplane.

All points at the left of the hyperplane H1 collapse to zero.
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Geometric analysis of dynamics II

When (a1, a2)T = a 2 R2⇥2 and (b1, b2)T = b 2 R2 they define two
hyperplanes H1(a1, b1) and H2(a2, b2).

Di↵erent regions are mapped to di↵erent locations. All points in the white
region are mapped to the same position (0, 0).

Idea: Construct the parameters {ak , bk}k such that in each iteration,
points of the same color collapse in the same point.
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Deep neural network in action
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Neural transport equations

Note that the di↵erential equation
(
ẋ = W (t)�(A(t)x + b(t))

x(0) = x0

corresponds to the characteristics of the transport equation:
(
@t⇢+ divx

⇥
(W (t)�(A(t)x + b(t)))⇢

⇤
= 0

⇢(0) = ⇢0

Atomic initial data can be driven to atomic final targets.

This establishes a link to the Theory of Optimal Transport: Neural
Transport?
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Conclusions and Perspectives

Control Theory and Machine Learning share in part origins and goals.
Mutual cross-fertilization o↵ers great opportunities.
Some of the problems are rather challenging.

We can understand analytically how and why algorithms work in the

ResNet context. But we can hardly explain and anticipate the optimal

configurations and strategies that emerge computationally.

Plenty to be done to better understand the fully nonlinear discrete

dynamics of deep neural networks.

Thank you for the invitation and attention
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