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Domain decomposition of flow problems on metric graphs
Why?

* Large scale networks may contain more than 20K major pipes and many nonlinear elements as
compressors, valves etc. See e.g. the German gas network

* For each pipe, one needs space-time discretization for the nonlinear PDEs (e.g. Euler system, shallow
water or water-hammer system) and discrete as well as continuous control variables leading to large-
scale optimality systems

* In order to incorporate randomness (of the system data), we need to solve optimality systems repeatedly
Moreover, in the control of gas networks one faces realtime constraints

* Real-time capable optimal control on large scale flow networks is beyond the current scope of humerical
reallizations

* Hence, decomposition is at order at almost every turn (i.e. the optimization level, the network and the
time).



Domain decomposition of optimal control problems on metric graphs
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Gas flow in pipe networks

Derivation of the model equations

We start with the FEuler system
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ot 8x(pv)—0,
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We reduce this to a semi-linear form
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Gas flow in pipe networks
Model hierarchy

and together with ¢y/q/p and ¢ = apv non-smooth and singular
p c*dq .
ot a dxr
dqg Op A

(SL)

ot Oz 2Da2pq‘q‘

If we then neglect the inertia in the second equation we arrive at

op c? 0 B
ot @ ozl
Op? Ac? 5




Network modeling for friction dominated flow

We now set y := p* and obtain from the second equation

Oy
1 52

q p—
Frd
M. A. Stoner 1969

With ag := L=, we obtain
c P.J. Wong, R.E. Larson 1968
0 vy 0 % 0 A.Bamberger, M. Sorin, J.P. Yvon’79
o = 0.
Yot /Iy Ox 1ov]
Thus, This problem is also singular
0 _ dy
i p—2 p—2 _
oo (1y17"y) (‘%' a;z;) 0,
where p = % More generally, with §,(s) := as|s|P7™2 and 1 < ¢ = p,a < 00, we P. A. Raviart’70
obtain
0 0 oy
aﬁa(y) axﬁp(%) = 0.



Graph notation

e Graph G = (V, E), with vertices V' = {n,n2,...,nv|} = {n;|j € J} and
edges E = {e1,e2,...,e g} = {ei|t € I}. | N3 s
e Fidge-to-node incidence matrix I ={i=1.T; M =12,3,4,5}

jD — {17 6}
— 1, 1if the edge e; starts at node n;,
€1 e
dij = ¢ +1, if the edges e; end at node n;;, . >
ni n2 ns Ne
0, else.

e Each edge e; is given in general by a line segment [0, ;] I, =1{1,2,3} g
® ¢; = [n;,ng] such that d;; = —1,d;x = 1, then x = 0, x = ¥; correspond to the
nodes n;, ng respectively.
e More precisely, we introduce the notion z;;, where z;; = 0 if d;; = —1 ,

e The edge degree is d; := |Z;|.
e 7 =JMuUJ?, where M = {j € J|d; > 1} represents the multiple nodes

and J° = {j € J|d; = 1} the simple nodes. According to Dirichlet or Neumann
boundary conditions a the simple nodes, we further decompose J° = J5 U Jx.



The network model with controls
azatﬁ(yz(mvt)) N a:c (6(8:8?%(37775))) — Ui(il?,t), NS Ia T < (ngz)v S (OvT)v

yi(ni,t) = yp(n;,t), Vi, k € 1Z;, jeJM tc (0,7,

iEIj

yi(nj,t):(), ite,jejg, tE(O,T),

dijﬁ(axyi)(nﬁt) — Uj(t), NS Ij7j = jjsv (S (OvT)v

yi(x,0) = y; (), z € (0,4;),
(Net)

where the functions u;,:1 € Z, u;,7 € Z;,7 € J Nq serve as distributed and
boundary controls, respectively.



The optimal control problem

Z// lyi(z,t)—y; (2, 0)[*dzdt, Ir(y(z,T)) Z/mT\ysz )—yi,r|*dz

’LEI O ’LEI 0

for the state, while the norms of the controls are penalized as follows

£

T
//|uzzvt “dxdt + Z zb/\uj t)|*dt,
0 0

JETR

I, (u)

zEI

where k;, ki = 0,v; 4,5 = 0 serve as penalty parameters. We pose the

following optimal control problem for (1)

min I(y,w) :=Iy(y) + Ir(y(-, T)) + Lu(u)

s.t. (OCP)
(y,u) satisfies (NET).



The corresponding optimality system

1

azﬁtﬁ(yz(x,t)) T 82? (B(awyz(mat))) — ) dpi(ilf,t),

a; B (yi(z, 1) 0ipi(z,t) + Op (B'(02yi(,))0upi(2,t) = ri(yi — yi), 1€, v €(0,4;), t€(0,T),
vi(nj,t) = yr(nj,t), pi(ng,t) = pr(n;,t), Vi, k € Ig, jeJM, te(0,7),
Z dijB(0zyi(nj,t)) =0, Z dijB'(0xyi(nj,t))0zpi(n,t) = 0, jeJ™, te(0,7),
1€L; 1€
yZ(njat):Oa pZ(njat):O7 iEIjajEjga tE(()?T)a

1 , . .
dijB(0zyi(nj,t)) = ” bpj(nj,t), dij B (Oryi(nj,t))0zpi(nj, t) =0, i€Zj,j€dn.te(0,T),
yi(fE,O) — yz‘,o(f), Pz‘(%T) — —/ii,T(yi(il?,T) - yflT(f))y T & (0,@),

(GOS)

where p denotes the adjoint variable (Lagrange multiplier).

We need to be careful with possibly ’flat regions’



Decomposition

Principal remarks

* We want to iteratively decompose the optimality system (GOS) on the ,global‘ network
G into subnetworks (Network tearing and Interconnection NET]I), in fact here, to each
individual edge. Analysis in the continuous setting!

* The decomposed optimality system (DOS) should itself be an optimality system for an
optimal control problem on the subnetwork (i.e. edge) including virtual controls at the
multiple nodes (interfaces), in the sense of J.L. Lions and O. Pironneau 1999.

* The decomposition should be non-overlapping (in the sense of P.L. Lions 1989)
overlapping domains are not intuitive at multiple nodes. Overlapping Schwarz-type
methods at serial connections (,cutting out stars’) are also under consideration (not

here, however), see Gon, Kwok, Tan 2022

* Space-time domain decomposition



Previous work

* General domains (manifolds, continuous level, no controls; very selective list): Early work by P. L.
Lions’1989 and O. Pironneau & J.L. Lions’1999 pursued later by J.-D. Benamou’1992-99 for elliptic and
parabolic problems, A. Quarteroni’1988-16, F. Nataf’ 91-’, M. Gander’00-, G. Ciaramella’17-,L. Halpern’00-,
J. Haslinger’00-14, J. Kucera,T. Sassi (Signorini-type contact problems), E. Engstrom, E. Hansen’22 (Robin-
type p-Laplace)...M. Dryia, W. Hackbusch’97 (general finite dimensional(!) nonlinear problems)

* Time domain decomposition (continuous level; again very selective list): J.L. Lions, Y. Maday, G.
Turinici’01, J. Salomon’07-, M. Gander’07-, F. Kwok’18-,G. Ciaramella’21 (semi-linear elliptic)
....(parareal/multiple shooting)...space-time...

* Optimal control problems: M. Heinkenschloss’00-11, M. Herty’07, S. Ulbrich’07, M. Gander,’00- F.
Kwok’17-, V. Agoshkov’85-, P. Gervasio’04-16, A. Quarteroni’05/06, B. Delourme, L. Halpern, B.
Nguyen’06, W. Gong, F. Kwok, Z. Tan’22 (overlapping domains) many others, for linear elliptic and
parabolic problems (in almost all cases).

* Networked domains and optimal control (hon-manifolds; multiple nodes in 1-D and interfaces in 2- or 3-
D): J. E. Lagnese & G.L. 2003, G.L. (et al.) 2018-2022.



Example: diamond graph

e We consider the so-called diamond graph,

e We apply a Neumann condition at ng and
a boundary control at n;.

e We want to steer y4 to the constant value 1,
applying running costs and terminal costs, individually.

e For the penalty data, we take Kk = 1.e4,v =1

e We use standard discretization in space and time,
as already proposed by Bamberger’77 and Raviart’70
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Example full network
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Example

Final value control
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Domain decomposition in space

The P.L. Lions algorithm extended to p-parabolic equations

BBi (1) (, 1) — By (Bi(Ontt (1)) = fi(w, 1), i€, ze(0,4), te(0,T),
yitl(n;,t) =0, i€Tj,j€J5, te(0,T),
di;Bi(0zy; T (nj,t) =0, i €L;,j € TN, t€(0,T),

%Jﬁ%( wyf—l_l)(wijvt) +pyf+1(wm? — Z Y xlﬂ? yz xwvt) 9

d; €T,
Z dl]ﬁl a:yl )(xl]7 ) — zgﬁz( zY; )(xijat) 9 ] < jMaz - Ija
d; €T,

yf“(a:,()) = y;(x); x € (0,4;), 1 €.

Notice: for serial connections d; = 2, thus the classical P.L. Lions algorithm
obtains



DDM a la Lions for two domains revisited

We look at the two link problem on the interval [—11]|, where we decompose
at x = 0. We introduce the Steklov-Poincaré mappings

Sz(nZ) + = (_1>Z+16(8xyz(t70)7 1= 1,2,

where y; are the solutions of the corresponding initial boundary value problems
on (—1,0), (0,1) respectively with boundary data 7;. Then the transmission
conditions

B(0y1(t,0) = B(y2(t,0)), y1(t,0) = y2(t,0)

are equivalent to
S1(m) + S2(n2) = 0, 1 = na.

which, in turn is equivalent to

(O’I—I— 31)771 — (O’I — 32)772, (O‘[—I— 32)772 — (O’I — 31)771



DDM a la Lions for two domains revisited

There are now two ways to solve this system iteratively.
e Jacobi-type method

(o + S1)nth = (o — So)ns
(0 + So)ns ™ = (o — S1)nF

o GaubBSeidel type

(01 4+ S1)nit = (oI — Sy)ns
(0] + So)ns ™t = (o — S1)ntt!

Notice that the first method is completely parallel, while the second is not. The
first iteration is the one, we propose for networks. See Engstrom, Hansen 2022
for the p-Laplace.

See Jan Sokolowski’s talk on Thursday for the use of the Steklov-Poincaré map
for (non-iterative) domain decomposition




Splitting of a multiple node

2o S1()(1) = B(Day (1,05 7))
Y1 =1 -
1 ) - S2(9)(t) = — gﬁ(ﬁxw(t,@;z}))
Ys~  _ 4

Steklov-Poincaré equation at the multiple node

S1(y) + Sa2(y) = 0.




ldea of proof: p-Laplace

To fix ideas, we consider just the p-Laplace problem:

— a:ﬁ(aryz) — fiv T & I@
y1(—1) =0, y;(1) =0,2=2,3,4,5,

D
yi(0) =gi=1,....5, Y B(8,y:(0)) =0,
1=1

I :=(=1,0),1; = (0,1),i = 2,3,4,5



Realizing the Steklov-Poincare setting

We first proceed formally (and then reflect on the Robin-trace operators).
We have

i = (ol + S1) 7 (o] — Sa)y

and introduce

Thus
o+ X =0, ot ) =y 5 (AR = g
20 27 94 " 20 1
1 1 1
S = A") = Sam, (= A) =ma, S (A =) = Sy



Convergence

This implies

(1" = p)? = (A" =X)?) >0
1
4o

(Sans — San)(ns —n) =

1
Ao
(Sini Tt = Sin)(nyT —n) =

(A" =) = (! = pw)?) >0,

where the inequalities follow from the monotonicity of 5(-) (see below). This
implies
T — 2 A= AP IAE = AP < =

and, hence

K

0 <Y (Ju" = pf = [WFH = p?) < |pu° — pf?, VK
k=0

Thus |pu® — p|? — |t — p|* — 0 as k — oo, and, therefore,

(Sams — San)(ns —n) — 0, (Sini ™" = Sin)(nytt —n) — 0.



Monotonicity of the p-Laplacian

The crucial property is the monotonicity of the p-Laplacian also for 1 < p < 2:

— xﬁ(axyz) — fi7 T [z
yl(_l) — 07 y’b(l) — 072 — 27 3747 57

5
yi(0) =7,i=1,...,5, » B(dyi(0)) =0,
1=1

I :=(-1,0),1; = (0,1),2 = 2,3,4,5. Thus, because of (8(a) — 3(b))(a — b) >
(la] + [b)P~%|a — b]* for 1 < p < 2, we have

0

(S1(a) — S1(b))(a—b) > / (100910l + 100 5))P2100t1.0 — a2

—1

which is clearly positive, but for bounded 0,y 4, 0zy1p this dominates the H L
norm



Example: two-link p-parabolic problem

We take the interval (0,2) and introduce the interface at x = 1. At z = 0, we
have Dirichlet boundary conditions and at £ = 2 Neumann conditions, as well
as initial conditions sin(7wz)? in each domain. The load is equal to 1 everywhere.
We apply the algorithm above with p = .5 and use the pdpe code from Matlab.
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Relevance for optimal control problems

We can approach the decomposition of the optimality system by the following
fixed point procedure:

1. Choose controls (distributed and boundary controls)
2. Solve the state equation in parallel using the DDM above

3. Input the state in the (linear!) adjoint equation and solve using the clas-
sical (still extended) DDM (se e.g. Benamou)

4. Retrieve the controls using the optimality condition and go back to the
first step until done.

Notice, however, that this procedure is not a DDM for the optimality system as
a whole and, consequently, does not lead to a substitute optimal control problem
on the subnetworks.



DDM algorithm for the optimality system: Algorithm

1. Given A7, pi%,

2. solve for y”“, p?“

8uB: (y+) — B, (Bi(DuyH)) = 1dp?“

6 (y n+1)8tpn+l + O (ﬂ (8wy?+l)8wp?+l) = ’fz(y:ﬂq — yf),
yf:H_l(xZ]? ) 0 pk+1(x1]7 )— O
1

zyﬂz( :L’yq, 1)(xij7t) — V-bpi(%’ )7 zgﬁ( acyz 1)830192(37% 1)(37z'jat) :Oa

leL;

2
dijBi(Dey; ) (wi5) + oy T (wi5) + pupf T (wi5) = — (d Z di; B1(0xy1’ ) (x15) — dijBi(Ozy; )(5’7%3))

+o (; >y, t) — yi(xijvt)) + p (dQJ D Pl (1) Pi(%j»t)) =t A(8)"



Algorithm cont.

235 ( :By?_l_l(x’ij’t))aivp?_l_l(xijvt) -+ Upn+1($ij>t) M?/?H(ﬂ?z'j,t)

( Zdl]ﬁl Ul (xl]’ ))5l( D )(:El], )— zgﬁ( rY; (x’L]7 ))(ﬁz( chz)(xz'jat))

] €T,

3. Update )\Z?Ll, ot forn - n+ 1.

(%)

Notice: for serial connections d; = 2, the algorithm of J.D. Benamou obtains in
case p = 2 for the parabolic problem



Equivalent virtual control problem

1. Given A, pi,

virtual controls

2. solve for y”+1 u?“,u?HJ € Ji /

min {J ylauz | Z/ ‘gl|2 + ‘:uyz ng }dt}

H9 H e,
S. t.
Ot B:(y;) — 02(B: (02yi )= u;, e, xel;,te (0,T)
dijBi(Oxyi(Tij, t)) + oyi(mij 8) = Nij ()" +9i;(),  je€ Ti,i €Lt €(0,T)
i, t =0, icZ;,jeJs,te(0,T)
diiBi(Opyi(zi5,1)) = (1), icTj,jeJIn,te(0,T)

3. Update X”’H ”H for n — n+ 1. 'real’ controls



Example

A two-link problem
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p=2, sigma=0, mu=10, nu=0, kappa=1000 p=3/2, sigma=50, mu=100, nu=.001, kappa=1000



Time-domain decomposition

e We introduce a coarse time discretization with
O0=To < < -+ <Tp <Tpp1 <+ <Tg <Tgi1=T.

e We introduce the intervals Iy := (Tx, Tk11)-

e We take the optimality system and restrict the to time interval .

e At the time-interfaces Tk, Ti11, we employ continuity conditions (yx)(T%) =
(ye—1)(Tx) k=1,..., K + 1, and similarly for the adjoint variables.



The time-domain-decomposition algorithm

Algorithm
This is equivalent to Lagnese/Leugering2002

3 n n
1. Given B k15 B ka1

2. solve the restricted OS\ 1, for yZH,PZH

(Y ) (Tetr) + 08 (v ) 0 ™) (Do) = tiprrs Blyr ™) (Tk) — 0wy ™ (Th) = K j—15

(1)
with

Hi g1 = (1 —€) (ﬁ(y2+1)(Tk+1) + UPZ+1(TI<:+1)) T € (ZJZH(TkH) T Uﬁl(yz+l)(PZ+l)(Tk+1)) , k=0,...,
preo1 =1 —¢) (yp1(Tk) — 0B (yp_1)Pr_1(Tk)) + & (Byp ™) (Tk) — a(z;”,;)“(Tk)) k=1,... K

3. Update u};"j,;l_l, “Z,ZL for n - n+ 1.

e € |0,1) is a relaxation parameter



Virtual control problem

The corresponding virtual optimal control problem for the generic interval I
reads as follows. With

Tei1 4 Tey1 ¢ 14
Jk (uk Yk, hk L — 1 / / Yk — yk dCEdSEt-F / /ufd:vdt | 95 / YL Tk+1 ,Lbk,k_|_1)2 -+ (hkjk_l)Q) dx
T, O 0

we have

. n
min  Jp (Uk, Yk, N 1)
ukaykahk,k—l

S. 1.

Ot Br(Yr) — Ox(Br (02 (yr))) = up, in (Tk, Try1) X (0,£)
Br(yr)(Lk) = hi 1 + Mz,k—p in (0,/),

where hy —1 serves as the virtual control.



Virtual control problem: first interval

This system has to be complemented by the problems on the first and the
last interval.

T, / T, ¢
min JJ' (ug, yo) := E//(y() — yI)2dxdt + - //ugdmdt
Uo,Yo 2 2
Ty O
0

o / yo(T1) — po.1)°dz
0
s. t.

0:Bo(Yo) — 3:1:(50(3:1:(?/0))) = ug, in (To,T1) x (0,¥)
Bk (yo0)(To) = yo, in (0,£),



Virtual control problem: last interval

. K
1T\ Jr (UK, YK ) / /yK yK dmdt+§/?/K Trt1) —

UK, YK hK K—1

OB (Y ) — 02 (Br(0x(Yk))) = uk, In (Tk,Tk4+1) X
5k(yK)(TK) — MTIL{,K—l + hK,K—lv In (076)7

(0,£)



TDD via virtual controls
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DEEP-PINN-DDM

Sturm-Liouville problem on an interval: Robin-Robin-DDM

e Physics informed neural networks (PINN) use neural network technology in
order to approximate PDEs and the corresponding initial and boundary condi-
tions in the sense of least squares.

e In this talk, we apply PINN to the P.L. Lions Robin-Robin-type approach to
a two-link problem.

e The PINN-approach, as a surrogate, may be used in part of the complex
network (say, daughter networks), while classical numerical methods are used
in a parent network. This novel paradigm that we can call NETI (instead of
FETI) as NEtwork Tearing and Integration is the subject of further research
in the CRC 154 Mathematical modelling, stmulation and optimization using the
example of gas networks.



Implementation (simplistic first approach)

Specification of training parameters

Ni = 201; %Number of grid points for the solution domain|0, 1]

Ne = 2000; %#of Epochs (1 Epoch contains Tb training batches)

Tb = 600; Y%#of training batches (# or corrections during 1 Epoch)
[r = 0.005; Y%Learning rate coefficient (relaxation for the update)

Nn = 10; %Number of nodes in the 1st hidden layer

Tt = 1le — 30; Y% Training tolerance N.B. redundant in the current version

Code for the Sturm-Liouville problem on a single interval developed from a MATLAB
code by
Andreas Almquist
Lulea University of Technology
Departement of Machine Elements
2020-01-01



Numerical results for Deep-PINN




Further results and outlook

1. We have a similar result for the time-domain-decomposition problem (again,
the proof only for for a = 2)

2. The simultaneous space-time-domain decomposition is open (fine for the
p-elliptic case)

3. The (B4, Bp)-problem is open (as far as the proof is concerned)

4. Constrained control can be included, however, this has not yet been proved
(just a matter of writing it up)

5. State constraints are completely open.

6. One may use PINN (XPINN) on subnetworks as surrogate models and
perform interface learning (in preparation)

7. Final goal: Network Tearing and Interconnection, a formal analogue of
FETI.



Thank you for your attention!



