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Background

@ The networks of distributed parameter systems are used:

e gas or water transportation modeling and control
o structural optimization for networks of beams

@ Mathematical models: flow characteristics, pipeline geometry, material
properties, and interactions with other systems.

@ Distributed parameter systems: temperature, pressure, and flow velocity.

-

Gas Pipelines in Europe ’1
Visualized with the

’ower of Graphs

Fig. 1: lllustration for the pipeline in Europe.
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Shape Optimization

In shape optimization, a general minimization problem reads
JQ) = I(Q,uq) — igf

where (2 C R" is an open set and ug stands for the solution of the state equation
for solids or fluids.

There are two methods to determine the descent direction for the gradient
method of shape optimization

© Boundary variations and shape gradients;
@ Topological derivatives and the level set method.

The convergence of the shape gradient flow method for the Kohn-Vogelius
functional is shown in two spatial dimensions (P.I. Plotnikov, J.S., JGEA, 2023).
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Introduction

Topological Derivatives for Networks

The topological derivatives for Partial Differential Equations on graphs are
introduced by G. Leugering, J.S.

@ The topological derivative of energy functional (no adjoint state) for
Timoshenko beams is solved by Ewald Ogiermann (2015).

@ The Steklov-Poincaré operator is employed by J.S., A. Zochowski (2005,
Numerische Mathematik) for contact problems of elasticity system in order
to separate the singular domain perturbations of topological derivatives from
the nonsmooth, unilateral mechanical contact by the technique of domain
decomposition.
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Introduction

Shape Functional for Control Problems

In shape optimization of control systems, the minimization problem reads
J(Q) = I(Q7 UQJ/Q) — lgf

where 2 C R" is an open set and uq stands for the optimal control in , yq the
solution in Q2 of the state equation for the optimal control.
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Introduction

Shape Functional for Control Problems in Networks

In the case of graphs, we consider the optimal value of the cost for control
problem as the shape functional for shape and topology optimization.

Nonlinear state equations are of importance for network optimization.

We consider linear state equations in order to establish the elementary results on

topology optimization.
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Introduction

Steklov-Poincaré operator

@ In the lecture of Prof. G. Leugering the domain decomposition method for
networks was introduced and analysed. In this method, the so-called
Steklov-Poincaré operator is employed.

@ We use the operator for a modification of the state equation. The small
geometric perturbation of the network topology at an interior node is
considered. The size of perturbation is governed by small parameter
€ — 0. The Steklov-Poincaré operator A(c) replaces the geometric
perturbation in weak form of the state equation. In this way the properties
of solutions to state equations with respect to ¢ can be analyzed provided
the form of A(e) is determined. This approach has already been used for the
Lapacian, linear elasticity, and Stokes problem.
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Introduction

Bilevel optimization on networks

@ Shape sensitivity analysis is performed for graphs: a single edge, a cross, and
the cross with a small cycle.

@ Shape functional at the higher level is defined by the optimal value of the
cost for control problem.

@ Optimal control problem admits the unique local solution determined by the
coupled (state and adjoint state) optimality system.

@ Both the evolution state equation and the steady state equation are
considered for purposes of bilevel optimization.

@ The topological derivative of the cost for the steady state equation is
introduced and evaluated for the cross with a small cycle.
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Boundary control problem

Optimal control problem in variable domain

@ The model includes the state equation and the cost functional.

@ The necessary and sufficient optimality conditions are derived in the
framework of Lagrangian formalism.

@ Another possibility for nonlinear state equations is the Pontryagin’s
Maximum Principle for combined shape and control problems.

@ The optimality system is solved numerically and the optimal value of the
cost is evaluated.

@ The sensitivity analysis of optimal cost with respect to the shape and
topology is performed.
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Boundary control problem

Wave equation for a single edge

o Interval I. :=[0,1+¢], |¢| < 0.1, where ¢ is the shape parameter
@ State equation
Vit — Yoo =0, 0n (0, T) X (0,1 +¢) (1)
@ Initial conditions
¥(0,%) = ¥’ (x), y:(0,%) = y* (x) (2)
@ Boundary conditions

yu(t,0) = u(t), y(t,14+¢) =0 (3)

@ u(t) is the Neumann control at the boundary x =0
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Boundary control problem

@ Tracking type cost functional
T 14¢

Jw) = / / X0 — 200t + 0= ooy s (4)

where x(x) is the characteristic function of [0,0.9], i.e., x(x) =1 on [0,0.9]
and x(1—x)=0, m=2,3
@ z=2z(x), xe I=10,1+¢g] and ¢ € R are given by the solution of ODE
Z'(x)=0 in(0,1+¢), Z(0)=¢ 2z(1+¢e)=0, (5)
where g9 = 0 € [-0.1,0.1] is fixed.
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Coupled system

@ Lagrangian functional

(u,y,p / /HE (Yt = Yo P+ J(u). (6)

o State equation: <gﬁ,n> =0 = Eq.(1)-Eq.(3)
o Adjoint-state equation: <a£,n> =0=
dy
Ptt = Pxx + X(X)(Z_ Y) on [Ov ﬂ X [Ov I+ 6]’
p(TaX):Ov pt(TaX):OaXG[O71+5]7 (7)
px(t,0) =0, p(t,1+¢)=0,tc [0, T].

e Optimality condition for m = 2: dJ(u;w) =0 =

T T
e H(0,T) : /Outtwtt:—/o p(t,0)w(t), Yw(t) € H(0,T). (8)
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Boundary control problem

Boundary control on the cross

o Consider the wave equation on a planar graph G := {E, V}.
e V= \VgU YV, (Vg: boundary vertices, V, : junction vertices)
@ Denote ng, (P}) by
—1 if node P; is the start node of E;
ng (P;) = ¢ +1 if node P; is the end node of E;

0 otherwise

V={Py, P1, P2, P},
E={E, E, E;}

Vg = {P1, P2, P3}, V, = {Po}

= (Pl) = NE, (PO) = NEgg (PO) =-1
= (PO) = Ng, (PQ) = NEg4 (P3) =1

Fig. 2: Tripod directed network.
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Boundary control problem

Transmission Condition

Assume y; is the state on E;.

o Continuity Condition
yi(Pj) = y«(P)),Vi, k € Ig,j € ny
(y1(Po) = y2(Po) = y3(Po))
o Kirchhoff Condition
> 0iP)ne(P) = 0,Vi € Ig,j € ny
E;

(ax}ﬁ(PO) - axy2('D0) - ax)’S(PO) = 0)

where Ig:={1,...,ne} and Iy := {1,..., ny} denote the set of edge indices
and the set of vertex indices, respectively.
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Boundary control problem

o Consider the regular perturbations 2. of the shape €2 of a graph G.
G. := {E., V.} with three edges of the length

|E571| =1- 2€7|Ee,2| = |E573| =1 +e.
+|E. 3| = 3.

@ The cost functional is defined on the subset Qy := Q\ O(Py) which
independent of €. It means that the small cycle is included in O(Py) for all
admissible —c < e < ¢, for some small c € R.

s =5 [ [ -2+ gt

Total length of the graph is constant |E; 1| + |E: 2
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Topological derivative

@ The topological derivative method in shape and topology optimization is a
new tool that can be used to minimize the shape functionals under the
Partial Differential Equations (PDEs) constraints.

@ Given the shape functional Q — J(Q2), the topological derivative at the
interior vertex Py € Vis defined by the following limit, if the limit exists,

T(Po) i= lim = (02) — J®). ©)

The existence of limit in Eq. (9) implies the expansion of the shape
functional

J(Q) = JQ) +eT(Po) + ole). (10)
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Boundary control problem

Singular perturbation of the graph at the central vertex by
a small cycle
o Consider the cross with six edges of the length |E;| = |E2| = |E3| = 1 — &,
and |Ey| = |E5| = |Eg| = € fore — 0T

o Total length of the graph is constant
|E1| + |Ea| + |E5| + |Ea| + |E5| + |Es| =3
oy

o A boundary control u(t) at vertical Py, i.e., a—(t, 0) = u(t)
X

Fig. 3: Tripod directed network with a cycle.
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Boundary control problem

@ Steady-state equation:
72? = 07X S [07 LI]
2(0) = ¢, z2(L2) = z3(L3) = 0 1)
zi(Pj) = zi(P)), Vi, k € Ig, j € ny(Continuity Condition)
ZE; Z;(Pj)ng,(P;) = 0,Vi € Ig,j € ny(Kirchhoff Condition)

e Optimality condition: optimal control u(t) := L[p|(¢)
T T
ue H(0,T) : /0 Wt = _/0 p(t,0)w(t), Yw(t) € H(0,T) (12)
u(0) = u(T) = ¢, u(0) = ue(T) = 0.

o State equation

(yi)tt (y:)xx*o te [O,H,Xe [ } Vie lg
yi(0, %) = yio(x), (¥:)e(0, X)ZY()
(y)'(t, 0) - L(1), (y2)(t L2) = 0, (ya)(t, Ls) = 0, (13)

yi( PJ) —Yk( 5 j) v’ ke IE7./E nV
ZE,-}/i(t7 J) :('Dj) = O,VIG IEv.j € ny
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Boundary control problem

o Adjoint equation
( ) :(pI)XX+X(ZI )/i) in tG[O,ﬂ,XE[O,Li], iclg
pi(T,x) =0, (p)e(T,x) =0,
(p1)'(t,0) = 0, (p2)(t, L2) =0, (p3)(t,L3) =0, (14)
(

pi(t, P)) = p(t, P;), Vi k € Ig, j € ny

ZE pl( ) EV(PJ) = 0 vie IE?./ € ny.
Algorithm 1: Fixed point algorithm

0

1. Choose u" ;
2. For i = 1 until satisfied ;
a. solve state equation for y; ;

b. solve adjoint equation for p; ;
c. solve optimal condition for u; ;

3. Terminate with the (approximate) fixed point &, y, p.
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Numerical Scheme

@ The weak formulation of the state equation on the graph:
y:=y. € V. .= V(Q,)
{ (e )iz () + (v 9) = (u(t) 1), Vo€ Ve (15)
y(0>X) = yO(X)7yt(0>X) = )/1(X)7

where a.(y, ) = > 15, fOL"}/,-go§dx is bilinear form and 1 (x) is the test
function on edge E;.
@ The space Vis defined as
V= {30: (8017"' a‘an) | pi € HQ(OvLi)ai: 1, ,nEv<pi('Di) =0,i=2,3,
continuity and Kirchhoff conditions at the inner vertices P; € V/,},
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Boundary control problem

Numerical discretization

@ Time: Finite-difference
o Y(t+ At x) — y(t— At x)

.yt(tax)’\' 2At )

Yt A x) = 2y(t, x) + y(t — At, x)
ytt(ta X) ~ (At)Q 9

where At is the time step.
@ Space: Hermite finite element

Fig. 4: The four Hermite basis functions on the unit interval [0, 1].
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Boundary control problem

Numerical results

Set (=1,T=1,e=0.5¢c=0.5.

0.99999008

0.99999996

LN
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0.99999992

0.9999999

0.99999988
o

Fig. 5: Final state y(T, x)(left) and optimal control(right) for wave equation.

Jan Sokolowski (IECL, IBS PAN) Optimal Design Aug. 3, 2023 22/31



Domain Decomposition

Steady state boundary control problem

@ The state equation on G = {V, E} is defined in weak form by
yeH:aly,¢) = (L(u),¢) VoeH,
H=/{¢,¢; € L*(0,L;), ¢2(0) = ¢3(0) = 0, continuity at interior vertices. }
(17)
e G=G UG, |E.1|=|E.2| = |E:3] =cmax —e=1—¢

Fig. 6: Tripod directed network with a cycle with domain decomposition.
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Domain Decomposition

Steklov-Poincaré operator

Definition 1 (Steklov-Poincaré operator)

A Steklov-Poincaré operator maps the values of Dirichlet boundary condition on
the boundary of the graph to the values of Neumann boundary condition for the
solution of an elliptic partial differential equation on the graph.

Definition 2 (Dirichlet-to-Neumann operator)

Let us consider the nonhomogeneous Dirichlet boundary value problem with the
data a € R". For the unique solution, we look for the Neumann boundary
conditions b = —Aa € R”, the Steklov-Poincaré operator, in this case, is given by
a matrix A.
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Domain Decomposition

@ Determine on G the Dirichlet-to-Neumann nonlocal operator given by a
matrix (A¢)sx3 by the solution for the boundary conditions
w;(0) = wi( Q) = a
and
b= —Aa,

dW,‘ dW,'
where a = col{ay, as, as}, b= col{by, ba, b3}, b; = E(O) = (Q).

If we know the exact solution w, for the Dirichlet problem on the graph G. with
the polynomials on the edges, it follows that the associated energy for such a
solution takes the form a(w,, w,) = —a' A. - a, thus the energy functional for the

graph G reads
¢ — a(;6,0) = a(Q%6,6) — (L — 1) T A - (L — 1).

A. is negative semidefinite because with the identical Dirichlet conditions, the
solution is constant so the energy is zero.

= = = =
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Domain Decomposition

@ The model defined on G; is —w} =0 on E. ;.

@ The solutions on E. ; = [0, L¢ j| are given by

wi(x) = aix+ Bi,x € [0, Lc 7] .
dW,'(O)

dx
o Considering the Kirchroff and continuity at Py, Ps, Ps respectively, we have

(I1-e)ag+p1=cag+ (1 —¢e)ag+ Ps,a1 + g — a5 =0,
(I1—8)ag+ fa=cas+ (1 —e)as + 1,02 + a5 —ag =0, (18)
(1—-28)ag+ B3 =cag+ (1 —e)ag + P2,a3 + ag — ayg = 0.

So a; = w;(0) = B;, bi = =qa;, b=Aa<= a=A.0.

2 -1 -1
-1 2 -1 |. (19)
-1 -1 2

_ 1
£ 2-3
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@ The cost functional:
L,'*l 1
S [ i a e gle-c
0 2
o Optimality system

Zfo’ Lyidi+a(Q% p,¢) — p(L— )T AG(L— 1) = zf 'z,
(907)/7 ¢) ( )¢1(0) _y(L - 1)TAE¢(L - 1) = _<¢1( )

0.02

0 02 04 06 08

Fig. 7: The shape functional for ¢ € [0, 1]
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Domain Decomposition

Topological derivative

@ y: The derivative of ¢ — y

@ The topological derivative of cost functional:
3

. Li—1
sy =3 [ = ai+ =0

=1
@ The derivative with respect to € of optimality system

3 .
; Jo 7t i+ a(20 b, ¢) — p(L— 1) TA(L—1) = p(L— 1) TAcp(L — 1)

a(Q% 3.0) = pr(0)¢1(0) = AL — 1) TAH(L — 1) = y(L = 1) TA.o(L — 1).
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Conclusion

Reference

@ A.A. Novotny, J. Sokolowski, Topological derivatives in shape optimization.
Springer Science Business Media, 2012.

@ A.A. Novotny, J. Sokolowski, A. Zochowski, Applications of the topological
derivative method. Springer, 2019.

o J. Sokolowski, A. Zochowski, Shape and topology optimization of
distributed parameter systems. Control Cybernet. 42, no. 1, pp. 217-226,
2013. 2697-2718.

o A. Kowalewski, |. Lasiecka, J. Sokolowski, Sensitivity analysis of hyperbolic
optimal control problems. Comput. Optim. Appl. vol. 52, no. 1, pp.
147-179, 2012.

Jan Sokolowski (IECL, IBS PAN) Optimal Design Aug. 3, 2023 29 /31



Conclusion

Conclusion and Future

@ Conclusion
o Bilevel optimization problems

o lower level: an optimal control problem
o higher level: a shape and topology optimization problem

o Domain decomposition technique:

o Poincaré-Steklov operator
e G=G UG,

o Topological derivative
o Future
o Nonlinear state equation on metric graphs
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Thank you for your attention!

BRI !
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