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Chromatography system

Oy + 0 [—2 ) =0, t>0, z€R,
14+ u1 +u2
©) drua + Os ﬁ =0, t>0, z€R,
1 2
u1(0, ) = a1 (z), z €R,
u2(07 .”13) = ﬂQ(‘CB)v x € Rv

where u1,u2 € Ry are the components’ concentrations.

[Bianchini, SIMA 2001]: For any initial condition @1, u2 € L (R), the Cauchy problem (C) admits
a unique entropy admissible solution.

In particular, the system admits a continuous semi-group of solutions

St Ry xL®R;R?%) — LI (R;R?)

(t,Ug = (a1,12)) + S (Vo).
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Changing variables

Using the change of variables
v:i=wu; +u2 and w:=u; — ug,

the system (C) reduces to the coupling between a scalar conservation law and a linear continuity
equation:

atv+az( Y ):0, t>0, z€R,
1+wv

(T) Orw + Oy (%):0, t>0, z€R,
v(0,z) = a1 (x) + a2(x), = €R,
w(0,z) = u1(x) —a2(z), x€R.

Triangular system: scalar conservation law + transport equation with OSL velocity.
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Panov's approach

[Panov, Springer 2008]: Let us consider the (more general) problem

®) {at(Ap) +82(Bp) =0, t>0, z€R,

A(O,a?)p(o,d:) = A(07$)90($)7 z €R,

under the assumptions
O Aand Bin L® (R4 X R);
Q@ 0tA+ 9B =0inD'((0,400) X R);
© there exists N : R — R such that eN(¢) — 0 as ¢ tends to zero and for all ¢ > 0,
|IB| < N(e)(A+e¢€) a.e. in (0,+00) X R;
Q ess-lim A(t,-) = A(0,-) in LL (R) and A(0,-) € L>=(R).
t—0t+

loc
For any given bounded initial condition pg, there exists a bounded function p, called generalized
solution of (P), such that, for any test function ¢ in C§°([0,4+00) x R),

/(‘)Jr"o/]R ((Ap)atSD + (BP)BzQD) dx dt + /]1; A(0, ) po(z)(0, ) dz = 0.

Moreover, every generalized solution p enjoys the following properties.
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Strong traces The initial condition is satisfied in the sense that in L (R)

ess-lim A(t, z)p(t, z) = A0, x)po(x),
t—0t

and for all T > 0, there exists ess-lim A(t,z)p(t, ) in L] (R).
t—T—
Reversibility If p is a generalized solution of problem (P) and the identity A(T,z)p(T,z) =

A(T, z)pr (x) holds in the sense of strong traces, then ¢ — p(T'—t) is a generalized
solution of

P1) {at(Ap)az(Bp) =0, t>0, z€R,

A(0,2)p(0,2) = A(0,z)pr(z), z= €R.

Uniqueness If A(0,z)po(xz) =0 a.e. on R then A(t,z)p(t,z) =0 a.e. on Ry x R.

Renormalization for any function p in C'(R) the function u o p satisfies

(P2) Ot (A(u(p))) + 0z (B(u(p))) =0, t>0, 2 €R,
(u(p)) (0,2) = p(po(z)), z €R,

in the sense of distributions.
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Well-posedness of the Chromatography system

In the case of system (T), the scalar equation

(CS) v + Oz <L> =0, t>0, z€R,
1+wv

admits a unique entropy solution in L>° (R4 X R) starting from any initial condition vg € L>°(R).

This allows us to define the divergence-free vector field t — (A(t, z), B(t, z)), for A(t,z) = v(t,x)

and B(t,z) = v(t, 2)

——~ - satisfying all of the hypothesis above.
T+ o(t, 2) ying yp

Then Panov’s theorem guarantees that, for any given zg € L>°(R), there exists a unique generalized
solution in L® (R4 x R) of

vz

8t(vz) + Oz (m
z(0,x) = zo(x), z € R.

= t R
(TP) ) 0, >0, zeR,
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From this, we can recover the solution for the chromatography system in the form (T) and (C):

— the solution w of the transport equation appearing in (T) can be seen as w = vz if we set
20 = (@1 — a2)/vo;
— the solution (u1,u2) of (C) can be seen as (u1 = vz1,u2 = vz2) if z; (for i € {1,2}) is the

solution of (TP) corresponding to the initial condition zg ; = @;/vo.

In both cases, since the z satisfies the maximum principle and we consider vo = @1 + 42 with
@; > 0, we have that ||z]| poo(r) < 1.
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Definition 1 (Solution of the chromatography system in the form (C))

Let U = (@1,12) € L (R;R?) be the initial conditions imposed to the system (C). A function
U = (u1,u2) € L®((0,T) x R;R?) is a strong generalized entropy solution for the system (C) if

U= (Uer,viw),where
2 2

— the function v is the KruZkov entropy solution of

By + By (1 v

+ v
v(0,z) = 41(2) + a2(z), = €R:=;

(Cs) ) =0, te(0,T), z €R,

— the function w is given by w = vz, where z is the solution of (TP) in the weak sense with

M and coefficients A = v and B = Y .
1 (z) — a2(x) 14w

initial datum zgp(z) =

V.

ﬁl(x) — 122(1‘)

In the above definition, the value of — —
a1 (z) — uz(x)

can be taken arbitrary £1 at points where

U=0.
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Definition 2 (Renormalized entropy solution of the chromatography system in the

form (C))

The function U € L*°((0,T) x R;R?) is a renormalized entropy solution for the system (T) if

— the function v is the KruZzkov entropy solution of (CS);

— the function w is given by w = zv where, for any test function ¢ € C§°([0,T) x R) and any
continuous function u, z satisfies

/(’)T /R (v,u(z)at‘to + rlv,u(w)azgo) dzdt + /]R v(0, z)p(z0(z))p(0, z) dz = 0.

Entropy/entropy-flux pairs

The entropy/entropy-flux pairs for the systems (T) take the following form:
w
E(v,w) = n(v) +vu (=),

O, w) =4 + 1371 ()

where 7) is any entropy function for (CS) and p € C(R). Therefore, the strong generalized entropy
solutions coincide with the entropy solutions for the system.
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Inverse design problem

@ for any given T > 0, characterize the set of profiles Ur = (u¥,ul) € L (R;R?) for which
there exists at least one initial condition (@1,72) € L™ (R;R?) such that S;Z(ﬁl,ﬁg) =
(uf,ud);

@ for each of such attainable profiles, characterize the set of initial data leading to them, J(Ur);

© for profiles that cannot be attained by a trajectory of the system, recover the initial data leading
to their “best possible approximation”.
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Sonic-boom minimization and inverse design for the Burgers' equation

Near Field

Mid Field
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Scalar problem: attainable profiles

The set of states in L°°(R) attainable by KruZkov entropy solutions at time 7' > 0 to scalar
conservation laws with strictly convex flux was characterized in [Ancona—Marson, SICON 1998] as
follows:

(AS) Ar(R, f) = {u € L®(R): 3p:R — R, right continuous,

w*p(x)}

non-decreasing such that f’(u) = T

Oleinik’s condition

Furthermore, for every ur € Ar (R, f), there exists a unique isentropic solution w : [0,T] x R — R
that verifies u(T),-) = ur.
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Scalar problem: backward reconstruction
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Figure: Multiple initial data may lead to the same target profile.
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Scalar problem: backward reconstruction

[Colombo—Perrollaz, JMPA 2020] & [Liard—Zuazua, IEEE 2021] characterized the set of inverse
designs as follows.

Theorem 3 (Inverse design for scalar conservation laws)

Let us consider a strictly convex scalar conservation law, fix T > 0, and let vp € Ap (R, f). Then,
the initial data 4o € L°°(R) verifies Sqf(ﬂo) = ur if and only if the following statement holds:

1) for any (z,y) € X(ur) xR

y y
1) / Sz (ur)(s) ds g/ fio(s) ds,
=T ' (ug(x)) =T f/(ur ()
2) for any (z,y) € X (ur)?
y=Tf (ur(v)) y=Tf (ur(y)) _
(2) / Sr (ur)(s)ds = / g (s) ds,
z—=Tf'(ur (z)) z=Tf"(ur(x))

where X (ur) is the set of points of approximate continuity of ur.
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Attainable profiles for the Chromatography system

[Andreianov-Donadello-Ghoshal-Shyam—Razafison, J. Evol. Eq. 2015]: The set of states in L>°(R)
that are attainable by entropy solutions of system (T) is given by

(AT) Ap(R) = Ar(R, f) x L= (R).

NB: A generic element of the set of the attainable profiles for (T) at time T > 0,
QlT(R) = {(UT7’LUT) v € .AT (R,U — %) and wr € LOO(R)},
v
does not correspond to an attainable profile for the system (C) because it might happen that
((vr + wr)(z), (v —wr)(x)) is not in Ri for almost every = € R, while all physically relevant
solutions of (C) are in L (R4 x R;R3).
Therefore, we define
Ar(R) = {(vT,wT) tur € Ar (R,v — %) and there exists
v

z € L= (R4 x R;[—1,1]) such that wp = sz}

and we say that Ur = (uf,ug) is attainable for system (C) if and only if (vp := u? —+ ug,wT =
uT —ul) e Ar.
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Backward reconstruction for the Chromatography system

Theorem 4 (Characterization and properties of the set of inverse designs)

1) Given Up = (uf,ul) € L®(R;R2) such that Vi = (vp = u] +ul,wp = u] —ud
Ar(R), the set of inverse design

i(Ur) = {Uo = (u?,ul) € L®(R;Ry) x L®(R;Ry) : SE (Vo) = Ur}
can be characterized as follows:

) Up = (ud,u) € L®(R;R4) x L®(R;R4) :
W(Ur) = 0,0 0_ = N
uy +uy € Z(vr) and u; = vo. 7 [S«(vo)](u; /v*),=i=1,2

2) Given Vp = (v, wr) € Ap(R), the set of inverse design
I(Vr) = {Vo € L=(R) x L=(R) : 64 (Vo) = Vr}
can be characterized as follows:

J(Vr) = {(vo, wo) € L= (R) x L*(R) : vo € Z(vr) and wo = 7 [S«(vo)](wr)}.

) €

} |
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In both of the above cases, the 1-to—1 correspondence between the elements of Z(vr) and the
elements of i(Ur) and J(Vr), together with the results on Z(vr) proved in [Colombo—Perrollaz,
JMPA 2020] yield the following properties:

T1) the set 3(Vr) is closed with respect to the L{ = x Li  topology;

loc

(T1
(T2) the set J(Vr) has empty interior with respect to the LL x Ll topology;
(

loc loc

G1) the sets J(Vr) and i(Ur) reduce to a singleton if and only if v € C(R).
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Numerical experiments

Let us describe the numerical method:
@ first, we use the entropic solver to get the isentropic solution of the first equation;

@ then, the numerical backward resolution of the transport equation is based on considering the
auxiliary forward problem

Otw + Oz (—g(v)w) =0, t>0, z€R,

where v is an entropic solution of the first equation.
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We consider

0.25, ifz < —0.5

op(a) = 0.25+0.5(x +0.5), if —05<z<0,
0.75 — 0.5, if0<z<0.5,
0.5, if0.5 <,

as a final state for the conservation law and

0.1, ifr<—1,
0.25(x+1)+0.1, if —1<z<0,
0.25(x—1)+04, ifo<z<l,
0.4, if1<z,

wr(z) =

as a final state for the transport equation. We choose Az = 7.8 x 10~% and At = Az/2.
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Unreachable profiles and an optimization problem

we fix T' > 0 and consider a target profile vtar = (Vtar, Wtar) Which is not attainable in time T' for
the system (T). We assume that

v, for x < a, w, for x < a,
Vtar (z) = < 9(z), for z € [a, b], wiar(x) = { w(w), for x € [a,b],
v, for z > b, wt, for z > b,

for some essentially bounded functions v, w.

We want to characterize the initial conditions which drive the system as close as possible to viar
with respect to the L2 norm. These are the minima of

Jo(Qo) = ||G¥(QO) - Utar”L?(R;R?),
where 6;(@0) belongs to the subset of A (R) defined as

{Q = (q1,92) € L™ (R;R?) : }
a1 € Ar(R, f), |1Qllpoem < C, and Q — vear € L'(R) [
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Equivalent formulation

Due to the definition of 27, this optimization problem is equivalent to finding g1, opt such that

(Opt) lar, opt = vtarll oy = min  [lg — vearl| 2
o HILA®) ’IEUiT(l’tar) HILA®R)

where the admissible set U] (vtar) is defined by

v
U (viar) = {q € L®(R): g€ Ar (R,v — m) s llgllLeory < C, and supp(q — vtar) C K}
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Backward—forward formulation

[Liard—Zuazua, SIMA 2023]: g1, opt = S (Sy (var)).- J

LZ(R)

LZ(R)

0 wo : S (uo) =S (s;(uT))}
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However, (g1, opt, Wtar) does not necessarily belong to A7 (R) as g1, opt — Wear is Not everywhere
positive.

Modified strategy.
o First, we associate to Utar the profile viar = (Vtar = ul?" + ul, wear = 2T — uf?r).
@ Then we apply the strategy above to find g1, opt-

o Finally, we consider g2, opt = min {q1, opt, Wtar} S0 to obtain a second component which is as
close as possible to wtar, under the constraint that q1, opt — g2, 0pt > 0.

The couple Qopt = (41, opt» 42, opt) is in Ap(R), so that the profile attainable at time T for (C)
which is the closest to Uiar in L= is

1 1
UOpt = g(ql,opt + q2,opt)7 E(ql, opt — q2,opt) .
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Given the initial conditions Vp = (vg, wo), with

0.5, if —1<z<0, 0.5, if —1<z<0,
0.25, otherwise, “)o0.15, otherwise,

vo(z) =

T I
\ Wtar

| w(1)
— A8 (v0)] (wo)
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Thank you for your attention!

[1] G. M. Coclite, N. De Nitti, C. Donadello, and F. Peru. Inverse design and boundary controllability for the chromatography
system. HAL-04164795, 2023. J
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