Inverse Problems of Nonlinear Wave Equations

Chen Xi
Shanghai Centre for Mathematical Sciences

Fudan University

The toy models

The toy models

- Let (M, g) be a Lorentzian $(n+1)$-manifold of signature $(-,+\cdots,+)$. Consider

$$
\begin{equation*}
\square_{g} u+N(u)=f,\left.\quad u\right|_{t \leq 0}=0, \tag{1}
\end{equation*}
$$

where $N(\cdot)$ is nonlinear and $\square_{g}:=d^{*} d$ locally reads

$$
\square_{g} u=(-\operatorname{det}(g))^{-1 / 2} \partial_{x^{\alpha}}\left((-\operatorname{det}(g))^{-1 / 2} g^{\alpha \beta} \partial_{x^{\beta}} u(x)\right) .
$$

The toy models

- Let (M, g) be a Lorentzian $(n+1)$-manifold of signature $(-,+\cdots,+)$. Consider

$$
\begin{equation*}
\square_{g} u+N(u)=f,\left.\quad u\right|_{t \leq 0}=0, \tag{1}
\end{equation*}
$$

where $N(\cdot)$ is nonlinear and $\square_{g}:=d^{*} d$ locally reads

$$
\square_{g} u=(-\operatorname{det}(g))^{-1 / 2} \partial_{x^{\alpha}}\left((-\operatorname{det}(g))^{-1 / 2} g^{\alpha \beta} \partial_{x^{\beta}} u(x)\right) .
$$

- Let G be a compact Lie group with Lie algebra \mathfrak{g}. Given a connection 1-form $A \in C^{\infty}\left(M ; T^{*} M \otimes \mathfrak{g}\right)$, consider

$$
\begin{equation*}
\square_{g, A} u+N(u)=f,\left.\quad u\right|_{t \leq 0}=0 \tag{2}
\end{equation*}
$$

where $\square_{g, A}:=(d+A)^{*}(d+A)$ on \mathbb{M}^{3+1} locally reads

$$
\square_{g, A} u=\square_{g} u-2\left(-A_{0} \frac{\partial u}{\partial t}+\sum_{j=1}^{3} A_{j} \frac{\partial u}{\partial x^{j}}\right)+\left(\operatorname{div} A+A_{0}^{2}-\sum_{j=1}^{3} A_{j}^{2}\right) u
$$

The toy models

- Let (M, g) be a Lorentzian $(n+1)$-manifold of signature $(-,+\cdots,+)$. Consider

$$
\begin{equation*}
\square_{g} u+N(u)=f,\left.\quad u\right|_{t \leq 0}=0, \tag{1}
\end{equation*}
$$

where $N(\cdot)$ is nonlinear and $\square_{g}:=d^{*} d$ locally reads

$$
\square_{g} u=(-\operatorname{det}(g))^{-1 / 2} \partial_{x^{\alpha}}\left((-\operatorname{det}(g))^{-1 / 2} g^{\alpha \beta} \partial_{x^{\beta}} u(x)\right) .
$$

- Let G be a compact Lie group with Lie algebra \mathfrak{g}. Given a connection 1-form $A \in C^{\infty}\left(M ; T^{*} M \otimes \mathfrak{g}\right)$, consider

$$
\begin{equation*}
\square_{g, A} u+N(u)=f,\left.\quad u\right|_{t \leq 0}=0 \tag{2}
\end{equation*}
$$

where $\square_{g, A}:=(d+A)^{*}(d+A)$ on \mathbb{M}^{3+1} locally reads

$$
\square_{g, A} u=\square_{g} u-2\left(-A_{0} \frac{\partial u}{\partial t}+\sum_{j=1}^{3} A_{j} \frac{\partial u}{\partial x^{j}}\right)+\left(\operatorname{div} A+A_{0}^{2}-\sum_{j=1}^{3} A_{j}^{2}\right) u
$$

- Given a time-dependent potential V, consider

$$
\begin{equation*}
\square_{g, A} u+V u+N(u)=f,\left.\quad u\right|_{t \leq 0}=0 \tag{3}
\end{equation*}
$$

Backgrounds in mathematical physics

Backgrounds in mathematical physics

- General Relativity:

Backgrounds in mathematical physics

- General Relativity:
- The wave equation (1) describes the wave propagation and asymptotic in the spacetime (M, g) (e.g. black holes) and the source f could be gravitational waves.

Backgrounds in mathematical physics

- General Relativity:
- The wave equation (1) describes the wave propagation and asymptotic in the spacetime (M, g) (e.g. black holes) and the source f could be gravitational waves.
- The Einstein equation :

$$
\operatorname{Ein}(g)=T
$$

with Einstein tensor Ein and stress-energy tensor T.

Backgrounds in mathematical physics

- General Relativity:
- The wave equation (1) describes the wave propagation and asymptotic in the spacetime (M, g) (e.g. black holes) and the source f could be gravitational waves.
- The Einstein equation :

$$
\operatorname{Ein}(g)=T
$$

with Einstein tensor Ein and stress-energy tensor T.

- In appropriate gauge conditions, it takes the form of (1).

Backgrounds in mathematical physics

- General Relativity:
- The wave equation (1) describes the wave propagation and asymptotic in the spacetime (M, g) (e.g. black holes) and the source f could be gravitational waves.
- The Einstein equation :

$$
\operatorname{Ein}(g)=T
$$

with Einstein tensor Ein and stress-energy tensor T.

- In appropriate gauge conditions, it takes the form of (1).
- Quantum Field Theory

Backgrounds in mathematical physics

- General Relativity:
- The wave equation (1) describes the wave propagation and asymptotic in the spacetime (M, g) (e.g. black holes) and the source f could be gravitational waves.
- The Einstein equation :

$$
\operatorname{Ein}(g)=T
$$

with Einstein tensor Ein and stress-energy tensor T.

- In appropriate gauge conditions, it takes the form of (1).
- Quantum Field Theory
- The Yang-Mills equation:

$$
d_{A}^{*} F_{A}=0
$$

where F_{A} is the curvature 2-form.

Backgrounds in mathematical physics

- General Relativity:
- The wave equation (1) describes the wave propagation and asymptotic in the spacetime (M, g) (e.g. black holes) and the source f could be gravitational waves.
- The Einstein equation :

$$
\operatorname{Ein}(g)=T
$$

with Einstein tensor Ein and stress-energy tensor T.

- In appropriate gauge conditions, it takes the form of (1).
- Quantum Field Theory
- The Yang-Mills equation:

$$
d_{A}^{*} F_{A}=0
$$

where F_{A} is the curvature 2-form.

- By the structure equation $F_{A}=d+[A, A]$, it becomes a semilinear wave equation in A.

Backgrounds in mathematical physics

- General Relativity:
- The wave equation (1) describes the wave propagation and asymptotic in the spacetime (M, g) (e.g. black holes) and the source f could be gravitational waves.
- The Einstein equation :

$$
\operatorname{Ein}(g)=T
$$

with Einstein tensor Ein and stress-energy tensor T.

- In appropriate gauge conditions, it takes the form of (1).
- Quantum Field Theory
- The Yang-Mills equation :

$$
d_{A}^{*} F_{A}=0
$$

where F_{A} is the curvature 2-form.

- By the structure equation $F_{A}=d+[A, A]$, it becomes a semilinear wave equation in A.
- Perturbing the equation with an external source yields (2).

Backgrounds in mathematical physics

- General Relativity:
- The wave equation (1) describes the wave propagation and asymptotic in the spacetime (M, g) (e.g. black holes) and the source f could be gravitational waves.
- The Einstein equation :

$$
\operatorname{Ein}(g)=T
$$

with Einstein tensor Ein and stress-energy tensor T.

- In appropriate gauge conditions, it takes the form of (1).
- Quantum Field Theory
- The Yang-Mills equation :

$$
d_{A}^{*} F_{A}=0
$$

where F_{A} is the curvature 2-form.

- By the structure equation $F_{A}=d+[A, A]$, it becomes a semilinear wave equation in A.
- Perturbing the equation with an external source yields (2).
- The Klein-Gordon equation on \mathbb{M}^{3+1} with a potential :

$$
\square u+m^{2} u+V u+N(u)=0
$$

The inverse problems

The inverse problems

- The inverse problem : recover (g, A, V) from reasonable local measurements in relevant physical models.

The inverse problems

- The inverse problem : recover (g, A, V) from reasonable local measurements in relevant physical models.
- The local measurements : make some artificial sources f and observe the effects u at the receiver \mho, i.e.

$$
\text { the Source-to-Solution map : }\left.\quad f \longmapsto u\right|_{\mho}
$$

The inverse problems

- The inverse problem : recover (g, A, V) from reasonable local measurements in relevant physical models.
- The local measurements : make some artificial sources f and observe the effects u at the receiver \mathcal{V}, i.e.

$$
\text { the Source-to-Solution map : }\left.\quad f \longmapsto u\right|_{\mho}
$$

- Reduction to (differential/integral) geometric inverse problems

The inverse problems

- The inverse problem : recover (g, A, V) from reasonable local measurements in relevant physical models.
- The local measurements : make some artificial sources f and observe the effects u at the receiver \mathcal{J}, i.e.

$$
\text { the Source-to-Solution map : }\left.\quad f \longmapsto u\right|_{\mho}
$$

- Reduction to (differential/integral) geometric inverse problems
- Boundary/lens/scattering rigidity :

The inverse problems

- The inverse problem : recover (g, A, V) from reasonable local measurements in relevant physical models.
- The local measurements : make some artificial sources f and observe the effects u at the receiver \mho, i.e.

$$
\text { the Source-to-Solution map : }\left.\quad f \longmapsto u\right|_{\mho}
$$

- Reduction to (differential/integral) geometric inverse problems
- Boundary/lens/scattering rigidity :
- first arrival times or geodesic distances \Rightarrow the metric g

The inverse problems

- The inverse problem : recover (g, A, V) from reasonable local measurements in relevant physical models.
- The local measurements : make some artificial sources f and observe the effects u at the receiver \mho, i.e.

$$
\text { the Source-to-Solution map : }\left.\quad f \longmapsto u\right|_{\mho}
$$

- Reduction to (differential/integral) geometric inverse problems
- Boundary/lens/scattering rigidity :
- first arrival times or geodesic distances \Rightarrow the metric g
- X-ray tomography :

The inverse problems

- The inverse problem : recover (g, A, V) from reasonable local measurements in relevant physical models.
- The local measurements : make some artificial sources f and observe the effects u at the receiver \mho, i.e.

$$
\text { the Source-to-Solution map : }\left.\quad f \longmapsto u\right|_{\mho}
$$

- Reduction to (differential/integral) geometric inverse problems
- Boundary/lens/scattering rigidity :
- first arrival times or geodesic distances \Rightarrow the metric g
- X-ray tomography :
- the attenuated X -ray transform \Rightarrow the connection A

The inverse problems

- The inverse problem : recover (g, A, V) from reasonable local measurements in relevant physical models.
- The local measurements : make some artificial sources f and observe the effects u at the receiver \mho, i.e.

$$
\text { the Source-to-Solution map : }\left.\quad f \longmapsto u\right|_{\mho}
$$

- Reduction to (differential/integral) geometric inverse problems
- Boundary/lens/scattering rigidity :
- first arrival times or geodesic distances \Rightarrow the metric g
- X-ray tomography :
- the attenuated X-ray transform \Rightarrow the connection A
- the X-ray inversion \Rightarrow the potential V

Progresses I

Progresses I

- Time-independent hyperbolic equations :

Progresses I

- Time-independent hyperbolic equations:
- Belishev-Kurylev : the method of Boundary Control (BC);

Progresses I

- Time-independent hyperbolic equations:
- Belishev-Kurylev: the method of Boundary Control (BC);
- Tataru : the method of Unique Continuation (UC).

Progresses I

- Time-independent hyperbolic equations:
- Belishev-Kurylev: the method of Boundary Control (BC);
- Tataru : the method of Unique Continuation (UC).
- Time-dependent hyperbolic equations:

Progresses I

- Time-independent hyperbolic equations:
- Belishev-Kurylev: the method of Boundary Control (BC);
- Tataru : the method of Unique Continuation (UC).
- Time-dependent hyperbolic equations :
- Alinhac: UC fails.

Progresses I

- Time-independent hyperbolic equations:
- Belishev-Kurylev: the method of Boundary Control (BC);
- Tataru : the method of Unique Continuation (UC).
- Time-dependent hyperbolic equations :
- Alinhac: UC fails.
- Linear cases are still open until now!

Progresses I

- Time-independent hyperbolic equations:
- Belishev-Kurylev: the method of Boundary Control (BC);
- Tataru : the method of Unique Continuation (UC).
- Time-dependent hyperbolic equations:
- Alinhac: UC fails.
- Linear cases are still open until now!
- Kurylev-Lassas-Uhlmann : Nonlinearities help inversion!

Progresses I

- Time-independent hyperbolic equations:
- Belishev-Kurylev: the method of Boundary Control (BC);
- Tataru : the method of Unique Continuation (UC).
- Time-dependent hyperbolic equations:
- Alinhac: UC fails.
- Linear cases are still open until now!
- Kurylev-Lassas-Uhlmann : Nonlinearities help inversion!
- Microlocal analysis of nonlinear wave equations:

Progresses I

- Time-independent hyperbolic equations:
- Belishev-Kurylev: the method of Boundary Control (BC);
- Tataru : the method of Unique Continuation (UC).
- Time-dependent hyperbolic equations :
- Alinhac: UC fails.
- Linear cases are still open until now!
- Kurylev-Lassas-Uhlmann : Nonlinearities help inversion!
- Microlocal analysis of nonlinear wave equations:
- Bony, Reed-Rauch, Melrose-Ritter : nonlinear waves are approximately the interactions of linear waves.

Progresses I

- Time-independent hyperbolic equations :
- Belishev-Kurylev: the method of Boundary Control (BC);
- Tataru : the method of Unique Continuation (UC).
- Time-dependent hyperbolic equations:
- Alinhac: UC fails.
- Linear cases are still open until now!
- Kurylev-Lassas-Uhlmann : Nonlinearities help inversion!
- Microlocal analysis of nonlinear wave equations:
- Bony, Reed-Rauch, Melrose-Ritter : nonlinear waves are approximately the interactions of linear waves.
- Melrose-Uhlmann, Guillemin-Uhlmann, Greenleaf-Uhlmann : Such interactions are Fourier Integral Operators associated multiple intersecting Lagrangians.

Progresses II

Progresses II

- Kurylev-Lassas-Uhlmann : introduce the method of fourth order linearization to recover g in (1) from arrival times.

Progresses II

- Kurylev-Lassas-Uhlmann : introduce the method of fourth order linearization to recover g in (1) from arrival times.
- Kurylev-Lassas-Oksanen-Uhlmann, Uhlmann-Y. R. Wang, Lassas-Uhlmann-Y. R. Wang : Einstein equations and variants.

Progresses II

- Kurylev-Lassas-Uhlmann : introduce the method of fourth order linearization to recover g in (1) from arrival times.
- Kurylev-Lassas-Oksanen-Uhlmann, Uhlmann-Y. R. Wang, Lassas-Uhlmann-Y. R. Wang : Einstein equations and variants.
- Hintz, de Hoop, Sá Barreto, J. Zhai, T. Zhou : variants of (1).

Progresses II

- Kurylev-Lassas-Uhlmann : introduce the method of fourth order linearization to recover g in (1) from arrival times.
- Kurylev-Lassas-Oksanen-Uhlmann, Uhlmann-Y. R. Wang, Lassas-Uhlmann-Y. R. Wang : Einstein equations and variants.
- Hintz, de Hoop, Sá Barreto, J. Zhai, T. Zhou : variants of (1).
- C.-Lassas-Oksanen-Paternain : develop the methods of third order linearization and broken X-ray to recover A in (2)

Progresses II

- Kurylev-Lassas-Uhlmann : introduce the method of fourth order linearization to recover g in (1) from arrival times.
- Kurylev-Lassas-Oksanen-Uhlmann, Uhlmann-Y. R. Wang, Lassas-Uhlmann-Y. R. Wang : Einstein equations and variants.
- Hintz, de Hoop, Sá Barreto, J. Zhai, T. Zhou : variants of (1).
- C.-Lassas-Oksanen-Paternain : develop the methods of third order linearization and broken X-ray to recover A in (2)
- C.-Lassas-Oksanen-Paternain : Yang-Mills equations.

Progresses II

- Kurylev-Lassas-Uhlmann : introduce the method of fourth order linearization to recover g in (1) from arrival times.
- Kurylev-Lassas-Oksanen-Uhlmann, Uhlmann-Y. R. Wang, Lassas-Uhlmann-Y. R. Wang : Einstein equations and variants.
- Hintz, de Hoop, Sá Barreto, J. Zhai, T. Zhou : variants of (1).
- C.-Lassas-Oksanen-Paternain : develop the methods of third order linearization and broken X-ray to recover A in (2)
- C.-Lassas-Oksanen-Paternain : Yang-Mills equations.
- C.-Lassas-Oksanen-Paternain : coupled Yang-Mills-Higgs systems.

Progresses II

- Kurylev-Lassas-Uhlmann : introduce the method of fourth order linearization to recover g in (1) from arrival times.
- Kurylev-Lassas-Oksanen-Uhlmann, Uhlmann-Y. R. Wang, Lassas-Uhlmann-Y. R. Wang : Einstein equations and variants.
- Hintz, de Hoop, Sá Barreto, J. Zhai, T. Zhou : variants of (1).
- C.-Lassas-Oksanen-Paternain : develop the methods of third order linearization and broken X-ray to recover A in (2)
- C.-Lassas-Oksanen-Paternain : Yang-Mills equations.
- C.-Lassas-Oksanen-Paternain : coupled Yang-Mills-Higgs systems.
- C.-Lassas-Oksanen-Paternain : the Standard Model of particle physics, i.e. coupled Yang-Mills-Higgs-Dirac-Yukawa (ongoing).

Progresses II

- Kurylev-Lassas-Uhlmann : introduce the method of fourth order linearization to recover g in (1) from arrival times.
- Kurylev-Lassas-Oksanen-Uhlmann, Uhlmann-Y. R. Wang, Lassas-Uhlmann-Y. R. Wang : Einstein equations and variants.
- Hintz, de Hoop, Sá Barreto, J. Zhai, T. Zhou : variants of (1).
- C.-Lassas-Oksanen-Paternain : develop the methods of third order linearization and broken X-ray to recover A in (2)
- C.-Lassas-Oksanen-Paternain : Yang-Mills equations.
- C.-Lassas-Oksanen-Paternain : coupled Yang-Mills-Higgs systems.
- C.-Lassas-Oksanen-Paternain : the Standard Model of particle physics, i.e. coupled Yang-Mills-Higgs-Dirac-Yukawa (ongoing).
- Feizmohammadi-Oksanen : recover V in (3)

Progresses II

- Kurylev-Lassas-Uhlmann : introduce the method of fourth order linearization to recover g in (1) from arrival times.
- Kurylev-Lassas-Oksanen-Uhlmann, Uhlmann-Y. R. Wang, Lassas-Uhlmann-Y. R. Wang : Einstein equations and variants.
- Hintz, de Hoop, Sá Barreto, J. Zhai, T. Zhou : variants of (1).
- C.-Lassas-Oksanen-Paternain : develop the methods of third order linearization and broken X-ray to recover A in (2)
- C.-Lassas-Oksanen-Paternain : Yang-Mills equations.
- C.-Lassas-Oksanen-Paternain : coupled Yang-Mills-Higgs systems.
- C.-Lassas-Oksanen-Paternain : the Standard Model of particle physics, i.e. coupled Yang-Mills-Higgs-Dirac-Yukawa (ongoing).
- Feizmohammadi-Oksanen : recover V in (3)
- Feizmohammadi-Lassas-Oksanen : introduce the 3-to-1 scattering relation based on the third order linearization to recover g in (1).

Third order linearisation

Third order linearisation

- To linearise the semilinear wave equation,

$$
\square_{g} \phi-A \cdot d \phi+|\phi|^{2} \phi=f,\left.\quad \phi\right|_{t<0}=0,
$$

we choose

$$
f=\epsilon_{(1)} f_{(1)}+\epsilon_{(2)} f_{(2)}+\epsilon_{(3)} f_{(3)}
$$

with sources $f_{(j)}$ around $x_{(j)}$ and small parameters $\epsilon_{(j)}>0$.

Third order linearisation

- To linearise the semilinear wave equation,

$$
\square_{g} \phi-A \cdot d \phi+|\phi|^{2} \phi=f,\left.\quad \phi\right|_{t<0}=0
$$

we choose

$$
f=\epsilon_{(1)} f_{(1)}+\epsilon_{(2)} f_{(2)}+\epsilon_{(3)} f_{(3)}
$$

with sources $f_{(j)}$ around $x_{(j)}$ and small parameters $\epsilon_{(j)}>0$.

- The derivatives

$$
\begin{aligned}
v_{(j)} & :=\left.\partial_{\epsilon_{(j)}} \phi\right|_{\epsilon=0} \\
v_{(j k)} & :=\left.\partial_{\epsilon_{(j k)}} \phi\right|_{\epsilon=0} \\
v_{(123)} & :=\left.\partial_{\epsilon_{(1)}} \partial_{\epsilon_{(2)}} \partial_{\epsilon_{(3)}} \phi\right|_{\epsilon=0}
\end{aligned}
$$

satisfy linear wave equations

$$
\begin{align*}
\left(\square_{g}-A \cdot d\right) v_{(j)} & =f_{(j)} \tag{4}\\
\left(\square_{g}-A \cdot d\right) v_{(j k)} & =0 \tag{5}\\
\left(\square_{g}-A \cdot d\right) v_{(123)} & =\frac{1}{2} \sum_{\{i, j, k\}=\{1,2,3\}}\left\langle v_{(i)}, v_{(j)}\right\rangle v_{(k)} \tag{6}
\end{align*}
$$

Three wave interactions

Three wave interactions

- (4) describes the linear wave $v_{(3)}$ with a source $f_{(j)}$.

Three wave interactions

- (4) describes the linear wave $v_{(3)}$ with a source $f_{(j)}$.
- The principal symbol satisfies a parallel transport equation

$$
\mathcal{L}_{H_{p}} \sigma\left(v_{(j)}\right)+\langle A, \dot{\gamma}\rangle \sigma\left(v_{(j)}\right)=\nabla_{\dot{\gamma}}^{A} \sigma\left(v_{(j)}\right)=0 \quad \text { along geodesics } \gamma .
$$

Three wave interactions

- (4) describes the linear wave $v_{(3)}$ with a source $f_{(j)}$.
- The principal symbol satisfies a parallel transport equation

$$
\mathcal{L}_{H_{p}} \sigma\left(v_{(j)}\right)+\langle A, \dot{\gamma}\rangle \sigma\left(v_{(j)}\right)=\nabla_{\dot{\gamma}}^{A} \sigma\left(v_{(j)}\right)=0 \quad \text { along geodesics } \gamma .
$$

- RHS of (6) is the interaction of linear waves $v_{(1)}, v_{(2)}, v_{(3)}$.

Three wave interactions

- (4) describes the linear wave $v_{(3)}$ with a source $f_{(j)}$.
- The principal symbol satisfies a parallel transport equation

$$
\mathcal{L}_{H_{p}} \sigma\left(v_{(j)}\right)+\langle A, \dot{\gamma}\rangle \sigma\left(v_{(j)}\right)=\nabla_{\dot{\gamma}}^{A} \sigma\left(v_{(j)}\right)=0 \quad \text { along geodesics } \gamma .
$$

- RHS of (6) is the interaction of linear waves $v_{(1)}, v_{(2)}, v_{(3)}$.
- $v_{(123)}$ is a returning linear wave created by the interaction.

Nonlinear interaction of three waves

Nonlinear interaction of three waves

- 2D

Nonlinear interaction of three waves

- 2D

The X-ray transform

The X-ray transform

- Consider the perturbed semilinear wave equation

$$
\square_{g} \phi-A \cdot d \phi+|\phi|^{2} \phi=f,\left.\quad \phi\right|_{t<0}=0 .
$$

The X-ray transform

- Consider the perturbed semilinear wave equation

$$
\square_{g} \phi-A \cdot d \phi+|\phi|^{2} \phi=f,\left.\quad \phi\right|_{t<0}=0 .
$$

- The source-to-solution map addresses the measurable data.

$$
L^{g, A} f:=\phi .
$$

The X-ray transform

- Consider the perturbed semilinear wave equation

$$
\square_{g} \phi-A \cdot d \phi+|\phi|^{2} \phi=f,\left.\quad \phi\right|_{t<0}=0 .
$$

- The source-to-solution map addresses the measurable data.

$$
L^{g, A} f:=\phi .
$$

- In the principal symbol level, this yields a broken X-ray transform (a parallel transport along a broken geodesic)

$$
\mathbf{S}^{g, A}(\sigma(f))=\sigma(\phi)
$$

The X-ray transform

- Consider the perturbed semilinear wave equation

$$
\square_{g} \phi-A \cdot d \phi+|\phi|^{2} \phi=f,\left.\quad \phi\right|_{t<0}=0 .
$$

- The source-to-solution map addresses the measurable data.

$$
L^{g, A} f:=\phi .
$$

- In the principal symbol level, this yields a broken X-ray transform (a parallel transport along a broken geodesic)

$$
\mathbf{S}^{g, A}(\sigma(f))=\sigma(\phi)
$$

- It is given, at the receiver, explicitly by

$$
\left.\mathbf{S}^{g, A}(\sigma(f))\right|_{\text {receiver }}=\left.\lim _{x_{(1)}, x_{(2)}, x_{(3)} \rightarrow x} \sigma\left(v_{(123)}\right)\right|_{\text {receiver }}
$$

The X-ray transform

- Consider the perturbed semilinear wave equation

$$
\square_{g} \phi-A \cdot d \phi+|\phi|^{2} \phi=f,\left.\quad \phi\right|_{t<0}=0 .
$$

- The source-to-solution map addresses the measurable data.

$$
L^{g, A} f:=\phi .
$$

- In the principal symbol level, this yields a broken X-ray transform (a parallel transport along a broken geodesic)

$$
\mathbf{S}^{g, A}(\sigma(f))=\sigma(\phi)
$$

- It is given, at the receiver, explicitly by

$$
\left.\mathbf{S}^{g, A}(\sigma(f))\right|_{\text {receiver }}=\left.\lim _{x_{(1)}, x_{(2)}, x_{(3)} \rightarrow x} \sigma\left(v_{(123)}\right)\right|_{\text {receiver }}
$$

- From the measurable data $L^{g, A}$, we reconstruct the geometry (g, A) by understanding the X-ray transform $\mathbf{S}^{g, A}$.
Measuable data \Rightarrow X-ray transform \Rightarrow Geometry $L^{g_{1}, A_{1}}=L^{g_{2}, A_{2}} \quad \Rightarrow \quad \mathbf{S}^{g_{1}, A_{1}}=\mathbf{S}^{g_{2}, A_{2}} \quad \Rightarrow \quad\left[g_{1}, A_{1}\right]=\left[g_{2}, A_{2}\right]$,

Stabilities of recovery

Stabilities of recovery

- The inverse problem : What happens to the result if there are measurement errors such as noises ?

Stabilities of recovery

- The inverse problem : What happens to the result if there are measurement errors such as noises ?
- C : the reconstruction of A in (2) is stable in the sense

Theorem
For any $0<\theta \leq 1$ and $\bar{s}>3$ with $\bar{s} / \theta \in \mathbb{Z}$,

$$
\|[A]-[B]\|_{C_{0}(\mathbb{D} \backslash \mho)} \lesssim C_{A, B} \tilde{C}_{A, B, \theta, \bar{s}}\|A-B\|_{C_{0}^{\bar{s} / \theta}(\mathbb{D})}^{\theta}\left\|L_{A}-L_{B}\right\|_{\mho, s}^{1-\theta} .
$$

Stabilities of recovery

- The inverse problem : What happens to the result if there are measurement errors such as noises ?
- C : the reconstruction of A in (2) is stable in the sense

Theorem
For any $0<\theta \leq 1$ and $\bar{s}>3$ with $\bar{s} / \theta \in \mathbb{Z}$,

$$
\|[A]-[B]\|_{C_{0}(\mathbb{D} \backslash \mho)} \lesssim C_{A, B} \tilde{C}_{A, B, \theta, \bar{s}}\|A-B\|_{C_{0}^{\bar{s} / \theta}(\mathbb{D})}^{\theta}\left\|L_{A}-L_{B}\right\|_{\mho, s}^{1-\theta} .
$$

- C : Reduction via the third order linearization and the 3-to-1 scattering relation to the stability of the broken X-ray
Theorem

$$
\left\|\mathrm{S}_{z_{\min } \leftarrow \boldsymbol{y} \leftarrow \boldsymbol{x}}^{A}-\mathrm{S}_{z_{\min } \leftarrow \boldsymbol{y} \leftarrow \boldsymbol{x}}^{B}\right\|_{C_{0}\left(\mathcal{F}^{x}\right)} \lesssim\left\|L_{A}-L_{B}\right\|_{\mho, s}
$$

$$
\|\rho([A])-\rho([B])\|_{C_{0}(\mathbb{D} \backslash \mho)} \lesssim \tilde{C}_{A, B}\left\|\mathbf{S}_{z \leftarrow \boldsymbol{y} \leftarrow \boldsymbol{x}}^{A}-\mathbf{S}_{z \leftarrow \boldsymbol{y} \leftarrow \boldsymbol{x}}^{B}\right\|_{C_{0}^{1}\left(\mathcal{F}^{X}\right)}
$$

Thank you for your attention.

