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The toy models

I Let (M, g) be a Lorentzian (n + 1)-manifold of signature
(−,+ · · · ,+). Consider

�gu + N(u) = f , u|t≤0 = 0, (1)

where N(·) is nonlinear and �g := d∗d locally reads

�gu = (− det(g))−1/2∂xα
(

(− det(g))−1/2gαβ∂xβu(x)
)
.

I Let G be a compact Lie group with Lie algebra g. Given a
connection 1-form A ∈ C∞(M;T ∗M ⊗ g), consider

�g ,Au + N(u) = f , u|t≤0 = 0, (2)

where �g ,A := (d + A)∗(d + A) on M3+1 locally reads

�g ,Au = �gu−2
(
−A0

∂u

∂t
+

3∑
j=1

Aj
∂u

∂x j

)
+
(
divA+A2

0−
3∑

j=1

A2

j

)
u.

I Given a time-dependent potential V , consider

�g ,Au + Vu + N(u) = f , u|t≤0 = 0. (3)
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Backgrounds in mathematical physics

I General Relativity:
I The wave equation (1) describes the wave propagation and

asymptotic in the spacetime (M, g) (e.g. black holes) and the
source f could be gravitational waves.

I The Einstein equation :

Ein(g) = T

with Einstein tensor Ein and stress-energy tensor T .
I In appropriate gauge conditions, it takes the form of (1).

I Quantum Field Theory
I The Yang-Mills equation :

d∗
A
FA = 0

where FA is the curvature 2-form.
I By the structure equation FA = d + [A,A], it becomes a

semilinear wave equation in A.
I Perturbing the equation with an external source yields (2).

I The Klein-Gordon equation on M3+1 with a potential :

�u + m2u + Vu + N(u) = 0.
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The inverse problems

I The inverse problem : recover (g ,A,V ) from reasonable

local measurements in relevant physical models.

I The local measurements : make some arti�cial sources f and
observe the e�ects u at the receiver f, i.e.

the Source-to-Solution map : f 7−→ u|f

I Reduction to (di�erential/integral) geometric inverse problems
I Boundary/lens/scattering rigidity :

I �rst arrival times or geodesic distances ⇒ the metric g

I X-ray tomography :
I the attenuated X-ray transform ⇒ the connection A
I the X-ray inversion ⇒ the potential V
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Progresses I

I Time-independent hyperbolic equations :
I Belishev-Kurylev : the method of Boundary Control (BC);
I Tataru : the method of Unique Continuation (UC).

I Time-dependent hyperbolic equations :
I Alinhac : UC fails.
I Linear cases are still open until now!
I Kurylev-Lassas-Uhlmann : Nonlinearities help inversion!

I Microlocal analysis of nonlinear wave equations :
I Bony, Reed-Rauch, Melrose-Ritter : nonlinear waves are

approximately the interactions of linear waves.
I Melrose-Uhlmann, Guillemin-Uhlmann, Greenleaf-Uhlmann :

Such interactions are Fourier Integral Operators associated
multiple intersecting Lagrangians.
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Progresses II

I Kurylev-Lassas-Uhlmann : introduce the method of fourth
order linearization to recover g in (1) from arrival times.
I Kurylev-Lassas-Oksanen-Uhlmann, Uhlmann-Y. R. Wang,

Lassas-Uhlmann-Y. R. Wang : Einstein equations and variants.
I Hintz, de Hoop, Sá Barreto, J. Zhai, T. Zhou : variants of (1).

I C.-Lassas-Oksanen-Paternain : develop the methods of third
order linearization and broken X-ray to recover A in (2)

I C.-Lassas-Oksanen-Paternain : Yang-Mills equations.
I C.-Lassas-Oksanen-Paternain : coupled Yang-Mills-Higgs

systems.
I C.-Lassas-Oksanen-Paternain : the Standard Model of particle

physics, i.e. coupled Yang-Mills-Higgs-Dirac-Yukawa
(ongoing).

I Feizmohammadi-Oksanen : recover V in (3)

I Feizmohammadi-Lassas-Oksanen : introduce the 3-to-1
scattering relation based on the third order linearization to
recover g in (1).
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Third order linearisation

I To linearise the semilinear wave equation,

�gφ− A · dφ+ |φ|2φ = f , φ|t<0 = 0,

we choose
f = ε(1)f(1) + ε(2)f(2) + ε(3)f(3)

with sources f(j) around x(j) and small parameters ε(j) > 0.
I The derivatives

v(j) := ∂ε(j)
φ|ε=0

v(jk) := ∂ε(jk)
φ|ε=0

v(123) := ∂ε(1)
∂ε(2)

∂ε(3)
φ|ε=0

satisfy linear wave equations

(�g − A · d)v(j) = f(j) (4)

(�g − A · d)v(jk) = 0 (5)

(�g − A · d)v(123) =
1

2

∑
{i ,j ,k}={1,2,3}

〈v(i), v(j)〉v(k). (6)
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Three wave interactions

I (4) describes the linear wave v(3) with a source f(j).

I The principal symbol satis�es a parallel transport equation

LHp
σ(v(j))+〈A, γ̇〉σ(v(j)) = ∇A

γ̇σ(v(j)) = 0 along geodesics γ.

I RHS of (6) is the interaction of linear waves v(1), v(2), v(3).

I v(123) is a returning linear wave created by the interaction.
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I 2D

x(1), x(2), x(3) → x

I 3D
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The X-ray transform

I Consider the perturbed semilinear wave equation

�gφ− A · dφ+ |φ|2φ = f , φ|t<0 = 0.

I The source-to-solution map addresses the measurable data.

Lg ,Af := φ.

I In the principal symbol level, this yields a broken X-ray

transform (a parallel transport along a broken geodesic)

Sg ,A(σ(f )) = σ(φ).

I It is given, at the receiver, explicitly by

Sg ,A(σ(f ))
∣∣∣
receiver

= lim
x(1),x(2),x(3)→x

σ(v(123))
∣∣∣
receiver

.

I From the measurable data Lg ,A, we reconstruct the geometry

(g ,A) by understanding the X-ray transform Sg ,A.

Measuable data ⇒ X-ray transform ⇒ Geometry
Lg1,A1 = Lg2,A2 ⇒ Sg1,A1 = Sg2,A2 ⇒ [g1,A1] = [g2,A2],
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Stabilities of recovery

I The inverse problem : What happens to the result if

there are measurement errors such as noises ?

I C : the reconstruction of A in (2) is stable in the sense

Theorem

For any 0 < θ ≤ 1 and s̄ > 3 with s̄/θ ∈ Z,

‖[A]− [B]‖C0(D\f) . CA,B C̃A,B,θ,s̄ ‖A− B‖θ
C
s̄/θ
0

(D)
‖LA − LB‖1−θf,s .

I C : Reduction via the third order linearization and the 3-to-1
scattering relation to the stability of the broken X-ray

Theorem∥∥∥SA
zmin←y←x

− SB
zmin←y←x

∥∥∥
C0(FX )

. ‖LA − LB‖f,s ,

‖ρ([A])− ρ([B])‖C0(D\f) . C̃A,B

∥∥∥SA
z←y←x

− SB
z←y←x

∥∥∥
C1

0
(FX )

.
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Thank you for your attention.


