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> Let G be a compact Lie group with Lie algebra g. Given a
connection 1-form A € C*(M; T*M ® g), consider

Dg,Au—l-N(u) = f, U‘tSO :0, (2)
where Oy 4 := (d + A)*(d + A) on M3 locally reads

3 3
Ogau = Dgu—Q(—Aog:-f-Z; Ajaa):.)+(divA+A%—z; 2)u.
i= iz

> Given a time-dependent potential V/, consider

Dg7Au + Vu+ N(U) =f, U|t§0 =0. (3)
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» General Relativity:

» The wave equation (1) describes the wave propagation and
asymptotic in the spacetime (M, g) (e.g. black holes) and the
source f could be gravitational waves.

» The Einstein equation :

Ein(g)=T
with Einstein tensor Ein and stress-energy tensor T.
> In appropriate gauge conditions, it takes the form of (1).
» Quantum Field Theory
» The Yang-Mills equation :
dxFa=0

where Fj4 is the curvature 2-form.
> By the structure equation Fa = d + [A, A], it becomes a
semilinear wave equation in A.
» Perturbing the equation with an external source yields (2).
» The Klein-Gordon equation on M3+ with a potential :

Ou+ m?u+ Vu + N(u) = 0.
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» The inverse problem : recover (g, A, V) from reasonable
local measurements in relevant physical models.

» The local measurements : make some artificial sources f and
observe the effects v at the receiver U, i.e.

the Source-to-Solution map :  f — ulp

» Reduction to (differential /integral) geometric inverse problems
» Boundary/lens/scattering rigidity :
» first arrival times or geodesic distances = the metric g
» X-ray tomography :
» the attenuated X-ray transform = the connection A
> the X-ray inversion = the potential V
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» Time-independent hyperbolic equations :
» Belishev-Kurylev : the method of Boundary Control (BC);
» Tataru : the method of Unique Continuation (UC).

» Time-dependent hyperbolic equations :

» Alinhac : UC fails.
» Linear cases are still open until now!
» Kurylev-Lassas-Uhlmann : Nonlinearities help inversion!

» Microlocal analysis of nonlinear wave equations :
» Bony, Reed-Rauch, Melrose-Ritter : nonlinear waves are
approximately the interactions of linear waves.
» Melrose-Uhlmann, Guillemin-Uhlmann, Greenleaf-Uhlmann :
Such interactions are Fourier Integral Operators associated
multiple intersecting Lagrangians.
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» (C.-Lassas-Oksanen-Paternain : Yang-Mills equations.

» (C.-Lassas-Oksanen-Paternain : coupled Yang-Mills-Higgs
systems.

» (C.-Lassas-Oksanen-Paternain : the Standard Model of particle
physics, i.e. coupled Yang-Mills-Higgs-Dirac-Yukawa
(ongoing).

» Feizmohammadi-Oksanen : recover V in (3)

» Feizmohammadi-Lassas-Oksanen : introduce the 3-to-1
scattering relation based on the third order linearization to
recover g in (1).
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Ogd— A-do+ 6o =1, ¢leco =0,
we choose
f=cfa) +eofe) + s

with sources f(;) around x;) and small parameters ¢(;) > 0.
» The derivatives

V(j) = ey dle=o
V(k) = Degy Fle=0
V(123) = Oeqr) Oy Oegz) Pl
satisfy linear wave equations
Mg —A-d)v;) = £ (4)
(Og — A-d)v(j 0 (5)

(Mg —A-d)vpay) = 5 > Wiy v vk (6)
{i’j’k}:{l’273}
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Three wave interactions

> (4) describes the linear wave v(3) with a source f;).

» The principal symbol satisfies a parallel transport equation
L,o(vijy)+A volvy)) = V;YAO'(V(J')) =0 along geodesics 7.

» RHS of (6) is the interaction of linear waves v(y), v(3), v(3).

> v(123) is a returning linear wave created by the interaction.
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» 3D
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The X-ray transform
» Consider the perturbed semilinear wave equation
Ogo— A-dp+ 66 =, dleco =0.
» The source-to-solution map addresses the measurable data.
LEAS = ¢.

» In the principal symbol level, this yields a broken X-ray
transform (a parallel transport along a broken geodesic)

$¢4(a(f)) = a(9).

> It is given, at the receiver, explicitly by

SEA(a(f)) = lim  o(vao3))

receiver  X).X@2).Xa)—X receiver’

» From the measurable data 8", we reconstruct the geometry
(g,A) by understanding the X-ray transform S&4.

Measuable data = X-ray transform = Geometry
L&A1 — [82A2 5  §8LAL — §82,A2 [g1,A1] — [g2,A2],
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» The inverse problem : What happens to the result if
there are measurement errors such as noises ?

» C : the reconstruction of A in (2) is stable in the sense

Theorem
Forany0 <6 <1ands >3 withs/0 €Z,

- (% —0
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» C : Reduction via the third order linearization and the 3-to-1
scattering relation to the stability of the broken X-ray

Theorem
A B
‘ szmin<—yex T 9z iy ex Co(FX) 5 HLA - LBHU,S’
oG = (1Bl ey = Ca |[Scye = Sy g my




Thank you for your attention.



