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PDEs

• Partial differential equations (PDEs) model various physical phenomena such as diffusion,

heat flow, fluid flow, elastic deformation, wave propagation, etc.

• For some applications, we need not only to model certain physical process, but also

control or optimize the considered process to optimally meet certain objectives.

• A given objective functional has to be minimized subject to a PDE or a system of coupled

PDEs, usually with other additional constraints.

• PDE-constrained optimization problems arise.

Figure 1: Control the heat distribution of a metal bar
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PDE-Constrained Optimization

• A PDE-constrained optimization problem can be abstractly represented as

min
u∈U,y∈Y

J (u, y), s.t. e(u, y) = 0, u ∈ Uad , y ∈ Yad ,

• U and Y are Banach spaces, Uad ⊂ U and Yad ⊂ Y are closed convex sets;

• J : U × Y → R is the objective functional;

• e(u, y) = 0 represents a PDE or a system of coupled PDEs;

• the state variable y ∈ Y describes the state (e.g., temperature distribution) of the

considered system modeled by e(u, y) = 0;

• the control variable u ∈ U is a parameter (e.g., source term) that shall be adapted in an

optimal way;

• the control constraint u ∈ Uad and the state constraint y ∈ Yad describe some physical

restrictions and realistic requirements.
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Nonsmooth PDE-Constrained Optimization-I

• Nonsmooth objective functional: J (y , u) = J(y , u) + R(u)
• The functional J : Y ×U → R consists of a data-fidelity term and a possible smooth

regularization.

• The nonsmooth functional R : U → R is employed to capture some prior information on u,

such as sparsity, discontinuity, and lower and/or upper bounds.

• A parabolic sparse optimal control problem:

min
y ,u∈L2(Q)

1

2
‖y − yd‖2L2(Q) +

α

2
‖u‖2L2(Q) + ρ‖u‖L1(Q) + IUad

(u),

subject to

∂y

∂t
− ν∆y + c0y = u + f in Ω× (0,T ), y = 0 on ∂Ω× (0,T ), y(0) = ϕ.

• Above, Ω is a bounded domain in Rd with d ≥ 1 and ∂Ω is its boundary; Q = Ω× (0,T )

with 0 < T < +∞; yd ∈ L2(Q) and φ ∈ L2(Ω), f ∈ L2(Q) are given.

• The regularization parameters α > 0, ρ > 0 and the coefficients ν > 0, c0 ≥ 0 are constant.

• IUad
(·) the indicator function of Uad := {u ∈ L∞(Ω)|a ≤ u(x , t) ≤ b, a.e. in Q} ⊂ L2(Q),

where a, b ∈ L2(Ω) with a < 0 < b almost everywhere.
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Nonsmooth PDE-Constrained Optimization-II

• Nonsmooth PDE:

interface problems −− piecewise-defined PDEs in different regions

coupled together with interface conditions, e.g., jumps in solution and flux across the

interface, hence nonsmooth or even discontinuous solutions.

Γ Ω−

Ω+
n

∂Ω

Figure 2: The geometry of an interface problem: an illustration
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Nonsmooth PDE-Constrained Optimization-II

• An elliptic interface optimal control problem:

min
y∈L2(Ω),u∈L2(Ω)

J(y , u) :=
1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω),

subject to 
−∇ · (β∇y) = u + f in Ω\Γ,

[y ]Γ = g0, [β∂ny ]Γ = g1 on Γ,

y = h0 on ∂Ω,

• The functions f ∈ L2(Ω), g0 ∈ H
1
2 (Γ), g1 ∈ L2(Γ), and h0 ∈ H

1
2 (∂Ω) are given, and β is a

nonzero piecewise-constant in Ω\Γ such that β = β− in Ω− and β = β+ in Ω+.

• The jump discontinuity across Γ: [y ]Γ(x) := limx̃→x in Ω+ y(x̃)− limx̃→x in Ω− y(x̃), ∀x ∈ Γ.

• The operator ∂n stands for the normal derivative on Γ, i.e. ∂ny(x) = n · ∇y(x) with n ∈ Rd

the outward unit normal vector of Γ. In particular, we have

[β∂ny ]Γ(x) := n · (β+ lim
x̃→x in Ω+

∇y(x̃)− β− lim
x̃→x in Ω+

∇y(x̃)), ∀x ∈ Γ.
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Traditional Numerical Methods

• Optimization algorithms + Numerical discretization

• Optimization algorithms: semismooth Newton methods, primal-dual active set methods,

alternating direction method of multipliers, primal-dual methods, etc.

• Numerical discretization: finite difference methods, finite element methods, etc.

• The implementation of these methods are usually based on the so-called adjoint

methodology.

• Two PDEs (the state equation and its adjoint system) or a saddle point problem

(first-order optimality system) are usually required to be solved repeatedly.

• After some proper numerical discretization, the resulting systems are large-scale and

ill-conditioned, and the computation cost for solving the PDEs or the saddle point problem

repeatedly could be extremely high in practice, especially for high-dimensional PDEs.

• Moreover, these methods are strongly problem-dependent, e.g., different types of PDEs

entail different tailored numerical discretization schemes.
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Deep Learning for PDEs

• Thanks to the universal approximation property and great expressibility of deep neural

networks (DNNs), deep learning has recently emerged as a new powerful tool for solving

PDEs.

• Some representative deep learning methods include:

• Deep Ritz method [E and Yu, 2018]

• Deep Galerkin method [Sirignano and Spiliopoulos, 2018]

• Physic-informed neural networks [Raissi, Perdikaris, and Karniadakis, 2019]

• Random feature method [Chen, Chi, E, and Yang, 2023]

• Operator learning methods: DeepONets [Lu, Jin, Pang, Zhang, and Karniadakis, 2021],

Fourier Neural Operator, Graph Neural Operator, [Li, Kovachki, Azizzadenesheli, Liu,

Bhattacharya, Stuart, and Anandkumar,2020] and Laplace Neural Operator [Cao, Goswami,

and Karniadakis, 2023], etc.

• ... ...
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PINNs

• Physics-informed neural networks (PINNs) can be viewed as a scientific machine learning
1,2 technique used to solve differential equations (e.g., ODEs and PDEs).

• PINNs approximate the PDE solution by a neural network and then train the neural

network by minimizing a loss function consisting of the residuals of the PDE and the

boundary/initial conditions at selected points in the domain (called residual points).

• Given an input point in the domain, PINNs produce an approximate solution in that point

of a PDE after training.

1https://www.osti.gov/servlets/purl/1478744
2https://docs.sciml.ai/Overview/stable/
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PINNs for Solving PDEs

The PINNs algorithm [Raissi, Perdikaris and Karniadakis 2019] for solving E(y , u) = 0 in Ω,

B(y , u) = 0 on ∂Ω with u a know function.

1. Construct a neural network ŷ(x ;θ) with parameters θ.

2. Specify the residual pointsTi ⊂ Ω and Tb ⊂ ∂Ω.

3. Specify a loss function by summing the residuals of the PDE and the boundary condition:

LPDE (θ, T ) = wiLi (θ, Ti ) + wbLb(θ, Tb),

where Li (θ, Ti ) = 1
|Ti | ∑x∈Ti ‖E(ŷ(x ;θ), u(x))‖2, Lb(θ, Tb) = 1

|Tb | ∑x∈Tb ‖B(ŷ(x ;θ), u(x))‖2,

and wi and wb are the weights.

4. Train the neural network ŷ(x ;θ) to find the optimal parameters θ∗ by minimizing the loss

function LPDE (θ, T ). At the end of the training procedure, the trained neural network

ŷ(x ,θ∗) approximately solves the PDE.
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PINNs

• Pros of PINNs: little or even no labeled data is required, easy to implement, mesh-free,

and flexible to different problem settings.

• More applications and discussions about PINNs can be referred to the review papers:

• Cuomo, S., Di Cola, V. S., Giampaolo, F., Rozza, G., Raissi, M., and Piccialli, F. Scientific

Machine Learning Through Physics–Informed Neural Networks: Where we are and What’s

Next. J Sci Comput 92, 88 (2022).

• Faroughi, S. A., Pawar, N., Fernandes, C., Das, S., Kalantari, N. K., and Mahjour, S. K.

Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in Scientific

Computing. arXiv preprint, arXiv:2211.07377, (2022).

• Hao, Z., Liu, S., Zhang, Y., Ying, C., Feng, Y., Su, H., and Zhu, J. Physics-Informed

Machine Learning: A Survey on Problems, Methods and Applications. arXiv preprint

arXiv:2211.08064, (2022).

• Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., and Yang, L.

Physics-informed machine learning. Nature Reviews Physics, 3(6) (2021) 422-440.

• Lu, L., Meng, X., Mao, Z., and Karniadakis, G.E. DeepXDE: A deep learning library for

solving differential equations. SIAM Rev. 63 (1) (2021) 208-228.
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PINNs for Smooth PDE-Constrained Optimization

• PINNs for smooth PDE-Constrained Optimization, see e.g., [Mowlavi and Nabi, 2023,

Barry-Straume, Sarshar, Popov, and Sandu, 2022]

• Consider the smooth PDE-constrained optimization problems modeled by

minJ (u, y), s.t. e(u, y) = 0.

• Let ŷ(x ;θy ) parameterized by θy and û(x ;θu) parameterized by θu be two neural

networks to approximate y and u, respectively.

• Specify the residual points T ⊂ Ω ∪ ∂Ω and a loss function by summing the PDE’s

residual and the objective functional:

Ltotal (θy ,θu, T ) = woJ (θy ,θu, T ) + wpLPDE (θy ,θu, T ),

where wo and wp are the weights.

• Train the neural networks ŷ(x ;θy ) and û(x ;θu) by minimizing the loss function

Ltotal (θy ,θu, T ). At the end of the training procedure, we obtain the solution ŷ(x ,θ∗y )

and û(x ,θ∗u)
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Challenges of PINNs for Solving Nonsmooth PDE-Constrained Optimization

• For the parabolic sparse optimal control problem:

• the nonsmooth term ρ‖û(x ;θu)‖L1(Q) + IUad
(û(x ;θu)) appears in the loss function.

• commonly used neural network training technologies (e.g., back-propagation and stochastic

gradient methods) cannot be applied directly.

• For the elliptic interface optimal control problem:

• the discontinuity or nonsmoothness of y cannot be well captured by the neural network

ŷ(x ;θy ) because the activation functions used in a DNN are in general smooth (e.g., the

sigmoid function) or at least continuous (e.g., the rectified linear unit (ReLU) function).
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(û(x ;θu)) appears in the loss function.

• commonly used neural network training technologies (e.g., back-propagation and stochastic

gradient methods) cannot be applied directly.

• For the elliptic interface optimal control problem:

• the discontinuity or nonsmoothness of y cannot be well captured by the neural network
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The ADMM-PINNs for Parabolic

Sparse Optimal Control Problems



Parabolic Sparse Optimal Control: Revisit

• We first recall the parabolic sparse optimal control problem under investigation:

min
y ,u∈L2(Q)

1

2
‖y − yd‖2L2(Q) +

α

2
‖u‖2L2(Q) + ρ‖u‖L1(Q) + IUad

(u),

subject to

∂y

∂t
− ν∆y + c0y = u + f in Ω× (0,T ), y = 0 on ∂Ω× (0,T ), y(0) = ϕ.

• Above, Ω is a bounded domain in Rd with d ≥ 1 and ∂Ω is its boundary; Q = Ω× (0,T )

with 0 < T < +∞; yd ∈ L2(Q) and φ ∈ L2(Ω), f ∈ L2(Q) are given.

• The regularization parameters α > 0, ρ > 0 and the coefficients ν > 0, c0 ≤ 0 are assumed

to be constant.

• IUad
(·) the indicator function of Uad := {u ∈ L∞(Ω)|a ≤ u(x , t) ≤ b, a.e. in Q} ⊂ L2(Q),

where a, b ∈ L2(Ω) with a < 0 < b almost everywhere.
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Main Ideas

• Operator splitting.

• The PDE constraint and the nonsmooth regularization are treated individually.

• The resulting subproblems admit closed-form solution or can be solved directly by some

well-developed computational techniques (e.g., PINNs).
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ADMM

• The alternating direction method of multipliers (ADMM) is a representative operator

splitting method introduced by Glowinski and Marroco in 1975 for nonlinear elliptic

problems.

• Let y(u) be the solution of the parabolic state equation corresponding to u. Introduce

z ∈ L2(Q) satisfying u = z , we then have

min
u,z∈L2(Q)

1

2
‖y(u)− yd‖2L2(Q) +

α

2
‖u‖2L2(Q) + ρ‖z‖L1(Q) + IUad

(z), s.t. u = z .

• The augmented Lagrangian functional reads as

LSCβ (u, z ; λ) =
1

2
‖y(u)− yd‖2L2(Q) +

α

2
‖u‖2L2(Q) − (λ, u − z)L2(Q) +

β

2
‖u − z‖2L2(Q),

where λ ∈ L2(Q) is the Lagrange multiplier associated with u = z and β > 0 is a penalty

parameter.
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‖u‖2L2(Q) − (λ, u − z)L2(Q) +

β

2
‖u − z‖2L2(Q),

where λ ∈ L2(Q) is the Lagrange multiplier associated with u = z and β > 0 is a penalty

parameter.
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ADMM-Cont’d

• The ADMM iterative scheme:
uk+1 = arg min

u∈L2(Q)
LSCβ (u, zk ; λk ),

zk+1 = arg min
z∈L2(Q)

LSCβ (uk+1, z ; λk ),

λk+1 = λk − β(uk+1 − zk+1).

• The z-subproblem is

zk+1 = arg min
z∈L2(Q)

IUad
(z) + ρ‖z‖L1(Q) − (λk , uk+1 − z)L2(Q) +

β

2
‖uk+1 − z‖2L2(Q).

• The solution zk+1 can be computed by

zk+1 = PUad

(
S ρ

β

(
uk+1 − λk

β

))
,

where Sζ is the Shrinkage operator: Sζ(v)(x) = sgn(v(x))(|v(x)| − ζ)+, ∀ ζ > 0.
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PINNs for the u-Subproblem

• The u-subproblem can be reformulated as

min
y ,u
J k
SC (y , u) :=

1

2
‖y(u)− yd‖2L2(Q)+

α

2
‖u‖2L2(Q)− (λk , u− zk )L2(Q)+

β

2
‖u− zk‖2L2(Q)

• The first-order optimality system reads as
p + (α + β)u − λk − βzk = 0,

∂y

∂t
− ν∆y + c0y = u + f in Ω× (0,T ), y = 0 on ∂Ω× (0,T ), y(0) = ϕ,

− ∂p

∂t
− ν∆p + c0p = y − yd in Ω× (0,T ), p = 0 on ∂Ω× (0,T ), p(T ) = 0,

where p is the corresponding adjoint variable.

• Eliminate the variable u, and then construct two neural networks ŷ(x ;θy ) parameterized

by θy and p̂(x ;θp) parameterized by θp to approximate y and p, respectively.
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PINNs for the u-Subproblem-Cont’d

• Choose residual points Ti ⊂ Ω× (0,T ), Tb1 ⊂ ∂Ω× (0,T ), and Tb2 ⊂ Ω.

• Specify a loss function by summing the residuals of the first-order optimality system

LOS (θy ,θp) = wy

( wi

|Ti | ∑
{x ,t}∈Ti

| ∂ŷ(x , t;θy )

∂t
− ν

∂2ŷ(x , t;θy )

∂x2
+ c0ŷ(x , t;θy )

− 1

α + β

(
− p̂(x , t;θp) + λk (x , t) + βzk (x , t)

)
− f (x , t)|2

+
wb1

|Tb1 |
∑

{x ,t}∈Tb1

|ŷ(x , t;θy )|2 +
wb2

|Tb2 |
∑

x∈Tb2

|ŷ(x , 0;θy )− ϕ(x)|2
)

+wp

( wi

|Ti | ∑
{x ,t}∈Ti

| − ∂p̂(x , t;θp)

∂t
− ν∆p̂(x , t;θp) + c0p̂(x , t;θp)− ŷ(x , t;θy ) + yd (x , t)|2

+
wb1

|Tb1 |
∑

{x ,t}∈Tb1

|p̂(x , t;θp)|2 +
wb2

|Tb2 |
∑

x∈Tb2

|p̂(x , 0;θp)|2
)

• Train the neural networks to update the parameters θk+1
y and θk+1

p , and update uk+1 by

uk+1(x , t) = 1
α+β (−p̂(x , t;θk+1

p ) + λk (x , t) + βzk (x , t)).
18



ADMM-PINNs

• Input: β > 0, z0, λ0,θ0y ,θ0p .

• For k ≥ 1

• Update uk+1 by the above PINNs.

• Update zk+1 by zk+1(x , t) = PUad

(
S ρ

β

(
uk+1(x , t)− λk (x,t)

β

))
.

• Update λk+1(x , t) = λk (x , t)− β(uk+1(x , t)− zk+1(x , t)).

• Output: Parameters (θ∗y ,θ∗p) and hence approximate solutions ŷ(x , t;θ∗y ) and

û(x , t) = 1
α+β (−p̂(x , t;θ∗p) + λk (x , t) + βzk (x , t)).
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Numerical Experiments-Problem Setting

• Set Ω = (0, 1)2,T = 1, ν = 1, c0 = 0, a = −1, b = 2, ȳ = 5
√

ρt sin(3πx1) sin(πx2), p̄ =

5
√

ρ(t − 1) sin(πx1) sin(πx2), and

ū =


max{−p̄ + ρ

α
, a} in {(x , t) ∈ Ω× (0,T ) : p̄(x , t) > ρ},

min{−p̄ − ρ

α
, b} in {(x , t) ∈ Ω× (0,T ) : p̄(x , t) < −ρ},

0 otherwise.

• We further set f = ∂ȳ
∂t − ∆ȳ − u and yd = ȳ − (− ∂p̄

∂t − ∆p̄).

• Then it can be shown that ū is the optimal control and ȳ is the corresponding optimal

state.
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Numerical Experiments- Neural Networks and Training

• We approximate y and p with fully-connected feed-forward neural networks containing 3

hidden layers of 32 neurons each. The hyperbolic tangent activation function is used in all

the neural networks.

• We uniformly sample |Ti | = 4096 residual points in the spatial-temporal domain

Ω× (0,T ), and |Tb1 | = 1024 points in ∂Ω× (0,T ) and |Tb2 | = 256 points in Ω for the

boundary and initial conditions.

• The weights are set as wy = wp = 1, wi = 1 and wb1 = wb2 = 5.

• To train the neural networks, we first use the Adam optimizer with learning rate η = 10−3

for 10000 iterations, and then switch to the L-BFGS for 10 iterations.

• We execute 10 ADMM iterations with α = 0.1, ρ = 0.8, β = 0.1, z0 = 0 and λ0 = 0.
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Numerical Results - Spatial Sparsity

(a) Exact control at t = 0.25 (b) Exact control at t = 0.5 (c) Exact control at t = 0.75

(d) Computed control at t =

0.25

(e) Computed control at t =

0.5

(f) Computed control at t =

0.75 22



Numerical Results - Temporal Sparsity

• It is easy to see ū = 0 in {(x , t) ∈ Ω× (0,T ) : p̄(x , t) < ρ} and we can show that when

t > t∗ = 0.8211, u(x , t) = 0 a.e. in Ω.

• The relative error
‖uk (x,t)−ū(x,t)‖

L2(Q)

‖ū(x,t)‖
L2(Q)

= 1.45× 10−2.
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Extensions of ADMM-PINNs

• More applications of the ADMM-PINNs and numerical results can be found in

Y. Song, Y. Yuan, and H. Yue, ”The ADMM-PINNs algorithmic framework for nonsmooth

PDE-constrained optimization: a deep learning approach”, arXiv preprint

arXiv:2302.08309,2023.
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The Hard-Constraint PINNs for

Elliptic Interface Optimal Control

Problems



Elliptic Interface Optimal Control-Revisit

• An elliptic interface optimal control problem:

min
y∈L2(Ω),u∈L2(Ω)

J(y , u) :=
1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω),

subject to 
−∇ · (β∇y) = u + f in Ω\Γ,

[y ]Γ = g0, [β∂ny ]Γ = g1 on Γ,

y = h0 on ∂Ω,

Γ Ω−

Ω+
n

∂Ω

25



First-Order Optimality Systems

• Let (u∗, y∗)> be the solution to the elliptic interface optimal control problem and p∗ be

the corresponding adjoint variable, then the following first-order optimality system holds:

u∗ = − 1

α
p∗,


−∇ · (β∇y∗) = u∗ + f in Ω\Γ,

[y∗]Γ = g0, [β∂ny
∗]Γ = g1 on Γ,

y∗ = h0 on ∂Ω,
−∇ · (β∇p∗) = y∗ − yd in Ω\Γ,

[p∗]Γ = 0, [β∂np
∗]Γ = 0 on Γ,

p∗ = 0 on ∂Ω.

26



Smooth Extension

• First, the function y : Ω→ R is only piecewise-smooth, but it can be extended to a

(d + 1)-dimensional function ỹ(x , z) : Ω×R→ R, which is smooth on the domain

Ω×R and satisfies

y(x) =

{
ỹ(x , 1), if x ∈ Ω+,

ỹ(x ,−1), if x ∈ Ω−,

• The additional input z ∈ R is the augmented coordinate variable that labels Ω+ and Ω−.

x1

x2

1 2

• Similarly, one can extend p to a (d + 1)-dimensional smooth function p̃(x , z).
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ỹ(x ,−1), if x ∈ Ω−,

• The additional input z ∈ R is the augmented coordinate variable that labels Ω+ and Ω−.

x1

x2

1 2

• Similarly, one can extend p to a (d + 1)-dimensional smooth function p̃(x , z).

27



Smooth Extension

• First, the function y : Ω→ R is only piecewise-smooth, but it can be extended to a

(d + 1)-dimensional function ỹ(x , z) : Ω×R→ R, which is smooth on the domain

Ω×R and satisfies

y(x) =

{
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Smooth Extension -Cont’d

• Substituting ỹ and p̃ into the first-order optimality system, we obtain that

− ∆x ỹ(x , z) =


1

β+

(
f (x) +

(
− 1

α
p̃(x , z)

))
if x ∈ Ω+, z = 1

1

β−

(
f (x) +

(
− 1

α
p̃(x , z)

))
if x ∈ Ω−, z = −1

,

ỹ(x , 1)− ỹ(x ,−1) = g0(x), n · (β+∇x ỹ(x , 1)− β−∇x ỹ(x ,−1)) = g1(x), if x ∈ Γ,

− ∆x p̃(x , z) =


1

β+
(ỹ(x , z)− yd (x)) if x ∈ Ω+, z = 1

1

β−
(ỹ(x , z)− yd (x)) if x ∈ Ω−, z = −1

,

p̃(x , 1)− p̃(x ,−1) = 0, n · (β+∇x p̃(x , 1)− β−∇x p̃(x ,−1)) = 0, if x ∈ Γ,

ỹ(x , 1) = h0(x), p̃(x , 1) = 0 if x ∈ ∂Ω.
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Discontinuity Capturing Shallow Neural Networks

• Since ỹ and p̃ are continuous in Ω×R, it follows from the universal approximation

theorem [Cybenko,1989] that one can approximate them by two shallow neural networks

ŷ(x , z ; θy ) and p̂(x , z ; θp).

• Such neural networks are referred to as the Discontinuity Capturing Shallow Neural

Networks (DCSNN) [Hu, Lin, and Lai, 2022].

• PINNs can be applied!
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PINNs

• Sample T := {(x i , z i )}Mi=1 ⊂ (Ω+ × {1}) ∪ (Ω− × {−1}), TB := {x iB}
MB
i=1 ⊂ ∂Ω, and

TΓ := {x iΓ}
MΓ
i=1 ⊂ Γ.

• Train the neural networks ŷ(x , z ; θy ) and p̂(x , z ; θp) by minimizing the loss function:

L(θy , θp) =
wy ,r

M

M

∑
i=1

∣∣∣∣∣−∆x ŷ(x
i , z i ; θy )−

(− 1
α p̂(x

i , z i ; θp)) + f (x i )

β±

∣∣∣∣∣
2

+
wy ,b

Mb

Mb

∑
i=1

|ŷ(x iB , 1; θy )− h0(x
i
B )|2

+
wy ,Γ

MΓ

MΓ

∑
i=1

∣∣∣ŷ(x iΓ, 1; θy )− ŷ(x iΓ,−1; θy )− g0(x
i
Γ)
∣∣∣2

+
wy ,Γn

MΓ

MΓ

∑
i=1

∣∣∣n · (β+∇x ŷ(x
Γ
i , 1; θy )− β−∇x ŷ(x

Γ
i ,−1; θy ))− g1(x

i
Γ)
∣∣∣2

+
wp,r

M

M

∑
i=1

∣∣∣∣−∆x p̂(xi , zi ; θp)−
ŷ(xi , zi ; θy )− yd (xi )

β±

∣∣∣∣2 + wp,b

Mb

Mb

∑
i=1

|p̂(xbi , 1; θp)|2

+
wp,Γ

MΓ

MΓ

∑
i=1

∣∣∣p̂(x iΓ, 1; θp)− p̂(x iΓ,−1; θp)
∣∣∣2 + wp,Γn

MΓ

MΓ

∑
i=1

∣∣∣n · (β+∇x p̂(x
Γ
i , 1; θp)− β−∇x p̂(x

Γ
i ,−1; θp))

∣∣∣2
30



Numerical Results
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Hard Constraints-Motivation

• In the above PINNs,

• The boundary and interface conditions are penalized in the loss function with constant

penalty parameters. Hence, these conditions are treated as soft constraints and cannot be

satisfied rigorously.

• The boundary and interface conditions, as well as the PDE, are treated together during the

training process and its effectiveness strongly depends on the choices of the weights in the

loss function. Manually determining these weights through trial and error is challenging and

time-demanding.

• The above numerical results show that the numerical errors mainly accumulate on the

boundaries and the interfaces.

• To tackle the above issues, we consider imposing the boundary and interface conditions as

hard constraints so that they are satisfied exactly and can be treated separately from the

PDE in the training of the neural networks.
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Hard Constraints- Strategies

• Develop a novel neural network architecture by generalizing the DCSNN to approximate y

and p.

• Modify the output of the neural network to impose the boundary condition.

• Construct an auxiliary function for the interface as an additional feature input of the neural

network to impose the interface condition.
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Hard Constraints - Neural Network Architectures

• Recall that y = h0 on ∂Ω, and [y ]Γ = g0.

• We approximate y by

ŷ(x ; θy ) = g(x) + h(x)Ny (x , φ(x); θy ).

• The function g : Ω→ R satisfies

g |∂Ω = h0, [g ]Γ = g0, g |Ω+ ∈ C2(Ω+), g |Ω− ∈ C2(Ω−).

• The function h : Ω→ R satisfies

h ∈ C2(Ω), h(x) = 0 if and only if x ∈ ∂Ω.

• φ : Ω→ R is an auxiliary function for the interface Γ and satisfies

φ ∈ C (Ω), φ|Ω+ ∈ C2(Ω+), φ|Ω− ∈ C2(Ω−), [φ]Γ = 0, [β∂nφ]Γ 6= 0 a.e. on Γ

• Ny (x , φ(x); θy ) is a neural network with smooth activation functions.
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Hard Constraints - Verification

• First, h(x)Ny (x , φ(x); θy ) is a continuous function of x over Ω.

• [ŷ ]Γ(x) = [g ]Γ(x) + [h(·)Ny (·, φ(·))]Γ(x) = g0(x), ∀x ∈ Γ – The interface condition is

satisfied.

• ŷ |∂Ω(x) = g |∂Ω(x) + h|∂Ω(x) (Ny (·, φ(·))|∂Ω) (x) = h0(x), ∀x ∈ ∂Ω. – The boundary

condition is satisfied.

• Furthermore, we have

[β∂n ŷ ]Γ(x) = [β∂ng ]Γ(x) + [β∂nNy (·, φ(·))]Γ(x)
= [β∂ng ]Γ(x) + (β+ − β−) (Ny (x , φ(x))(n · ∇h(x)) + h(x)(n · ∇xN (x , φ(x))))

+
∂Ny

∂φ
(h(x)[β∂nφ]Γ(x)) , ∀x ∈ Γ,

which implies that the interface-gradient condition [β∂ny ]Γ = g1 cannot be exactly

satisfied by ŷ(x ; θy ) and should be penalized in the loss function of PINNs.
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• [ŷ ]Γ(x) = [g ]Γ(x) + [h(·)Ny (·, φ(·))]Γ(x) = g0(x), ∀x ∈ Γ – The interface condition is

satisfied.
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Choices of Auxiliary Functions

• If the functions g0 and h0, the interface Γ, and the boundary ∂Ω admit analytic forms, it

is usually easy to construct g and h with analytic expressions.

• For instance, if Ω = (0, 1)× (0, 1), then we can choose h = x1(1− x1)x2(1− x2).

• More discussions can be found in e.g., [Lagari, Tsoukalas, Safarkhani, and Lagaris, 2020;

Lagaris, Likas, and Fotiadis, 1998; Lu, Pestourie, Yao, Wang, Verdugo, and, Johnson,

2021].
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Choices of Auxiliary Functions - Cont’d

• The choice of φ is more delicate.

• If Γ is the zero level set of a function in C k (Ω)(k ≥ 2), then φ can be easily constructed.

• (Circle-shaped Interface) Consider a domain Ω ⊂ Rd and the interface Γ ⊂ Ω is given by the

circle Γ = {x ∈ Rd−1 : ‖x‖2 = r0}, with r0 > 0. The domain Ω is divided into two parts

Ω− = {x ∈ Rd−1 : ‖x‖2 < r0} and Ω+ = {x ∈ Ω : ‖x‖2 > r0}. In this case, the auxiliary

function φ can be constructed as

φ(x) =

 r20 − ‖x‖22, if x ∈ Ω−

0, if x ∈ Ω+ ∪ Γ ∪ ∂Ω.

• (Box-shaped Interface) Consider a domain Ω ⊂ Rd containing the box

B := [a1, b1]× · · · × [ad , bd ] ∈ Rd . Let the interface Γ = ∂B, which divides Ω into

Ω− = (a1, b1)× · · · × (ad , bd ) and Ω+ = Ω\B. In this case, we define

φ(x) =

∏d
i=1(xi − ai )(bi − xi ), if x ∈ Ω−,

0, if x ∈ Ω+ ∪ Γ ∪ ∂Ω.
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Choices of Auxiliary Functions - Cont’d

• Otherwise, we shall show that, if Ω+, Ω−, and Γ satisfy the following assumptions, then

we can construct an auxiliary function φ(x) analytically.

Assumptions

• The sub-domain Ω− is the intersection of the interior of finitely many oriented, smooth, and

embedded manifolds M1,M2, . . . ,Mn, where Mi ∩Mj is of measure zero whenever i 6= j and

i , j ∈ {1, . . . , n}.

• There exists an open neighborhood U ⊂ Rd of Γ, such that for each Mi (i ∈ {1, . . . , n}), there

exists smooth functions ψi : U → R satisfying ψi ∈ C2(U) and

ψi (x) = 0 if x ∈ Γ, ψi (x) > 0 if x ∈ U ∩Ω−, ∂nψi 6= 0 on Mi ∩ Γ.

• There exists constants ci > 0 such that ψi (x) > ci for all x ∈ ∂U ∩Ω− and for all i ∈ {1, . . . , n}.
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Choices of Auxiliary Functions - Cont’d

Theorem

Suppose the above assumptions hold and we define ψ : U → R as ψ(x) = ∏n
i=1 ψi (x). For

any constant c such that 0 < c < ∏n
i=1 ci , let

Lc := {x ∈ U : ψ(x) ≥ c}.

Then the function φ : Ω̄→ R given by

φ(x) =


c3, if x ∈ (Ω−\U) ∪ (Ω− ∩ Lc ),

c3− (c − ψ(x))3 , if x ∈ (U ∩Ω−)\Lc ,

0, if x ∈ Ω+

is well-defined and satisfies

φ ∈ C (Ω), φ|Ω+ ∈ C2(Ω+), φ|Ω− ∈ C2(Ω−), [φ]Γ = 0, [β∂nφ]Γ 6= 0 a.e. on Γ.
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An Example of φ

• Let Ω ⊂ R2 be a bounded domain and the star-shaped interface Γ ⊂ R be defined by the

zero level set of the following function in polar coordinates ψ(r , θ) = r − a− b sin(5θ)

with constants b < a. The domain Ω is divided into

Ω− = {(r , θ) ∈ R2 : r < a+ b sin(5θ)} and Ω+ = {(r , θ) ∈ Ω : r > a+ b sin(5θ)}.
• Note that ψ(r , θ) is not differentiable on Ω, since the polar angle is not differentiable at

the origin. In this case, we define

φ(r , θ) =


(
a− b

2

)3

, if a+ b sin(5θ)− r ≥ a− b

2
,(

a− b

2

)3

−
(
a− b

2
+ ψ(r , θ)

)3

, if 0 < a+ b sin(5θ)− r <
a− b

2
,

0, otherwise.
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Remarks on the Choices of Auxiliary Functions

• If the functions g , h, and φ are difficult to construct analytically, we can construct them

by training some neural networks.

• For instance, we can train a DCSNN ĝ(x , z ; θg ) and a neural network ĥ(x ; θh) with

smooth activation functions by minimizing the following loss functions:

w1g

Mb

Mb

∑
i=1

|ĝ(x iB , 1; θy )− h0(x
i
B )|2 +

w2g

MΓ

MΓ

∑
i=1

∣∣∣ĝ(x iΓ, 1; θg )− ĝ(x iΓ,−1; θg )− g0(x
i
Γ)
∣∣∣2 ,

and w1h

Mb

Mb

∑
i=1

|ĥ(x iB ; θh)|2 +
w2h

M

M

∑
i=1

|ĥ(x i ; θh)− h̄(x i )|2,

• w1g ,w2g ,w1h, and w2h > 0 are the weights.

• {x i}Mi=1 ⊂ Ω, {x iB}
MB
i=1 ⊂ ∂Ω, and {x iΓ}

MΓ
i=1 ⊂ Γ are the training points.

• h̄(x) ∈ C2(Ω) is a known function satisfying h̄(x) 6= 0 in Ω, e.g.

h̄(x) = minx̂∈∂Ω{‖x − x̂‖42}.
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The Hard-Constraint PINNs

• We approximate y by the neural network ŷ(x ; θy ) = g(x) + h(x)Ny (x , φ(x); θy ) defined

above.

• Since the boundary and interface conditions for p are homogeneous, we approximate it by

p̂(x ; θp) = h(x)Np(x , φ(x); θp),

where Np(x , φ(x); θp) is a neural netowrk with smooth activation functions and

parameterized by θp, the functions h and φ are the same as those in ŷ(x ; θy ).

• The neural networks ŷ(x ; θy ) and p̂(x ; θp) are trained by minimizing

LHC (θy , θp) =
wy ,r

M

M

∑
i=1

∣∣∣∣∣−∆x ŷ(x
i ; θy )−

(− 1
α p̂(x

i ; θp)) + f (x i )

β±

∣∣∣∣∣
2

+
wy ,Γn

MΓ

MΓ

∑
i=1

∣∣∣[β∂n ŷ ]Γ(x
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Numerical Results
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Numerical Comparisons

• To test the accuracy, we select 256× 256 testing points {x i}MT
i=1 ⊂ Ω following the Latin

hypercube sampling.

• Then compute

εabs =

√√√√ 1

MT

MT

∑
i=1

(û(x i )− u∗(x i ))2, and εrel = εabs

√
A(Ω)/||u∗||L2(Ω)

where A(Ω) is the area of Ω (i.e. the Lebesgue measure of Ω), and ||u∗||L2(Ω) is

computed using the numerical integration function dblquad implemented in the SciPy

library of Python.

• The soft-constraint PINNs: εabs = 1.2360× 10−3, εrel = 4.0461× 10−3

• The hard-constraint PINNs: εabs = 4.7652× 10−5, εrel = 1.5599× 10−4

• The hard-constraint PINNs approach improves the accuracy by more than 20x.
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Numerical Comparisons

• Numerical errors of the soft-constraint PINNs.
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• Numerical errors of the hard-constraint PINNs.
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More Results

• More numerical results on the hard-constraint PINNs for solving other interface optimal

control problems can be found in

M. Lai, Y. Song, X. Yuan, H. Yue, and T. Zeng. “The hard-constraint physics-informed

neural networks for interface optimal control problems”. to appear
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Conclusions and Perspectives

• It is challenging to apply the PINNs directly to nonsmooth PDE-constrained optimization

problems.

• Combine PINNs with classic operator splitting optimization techniques (e.g., ADMM)

leads to implementable and efficient algorithms for PDE-constrained optimization

problems with nonsmooth objective functional.

• Leveraged by the discontinuity capturing neural networks, PINNs can be applied to solve

interface optimal control problem.

• Imposing the boundary and interface conditions as hard constraints can improves the

numerical accuracy and simplifies the training procedure of PINNs.

• The validated efficiency of the ADMM-PINNs and the hard-constraint PINNs clearly

justifies the necessity to investigate the underlying theoretical issues such as the

convergence analysis and the error estimate.
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