On the construction of exact control for the wave equation

Yi Zhou

Fudan University

August, 2023

Yi Zhou On the construction of exact control for the wave equation

★ 3 → < 3</p>

contents

2 Control of semilinear wave equation

- 3 Control of quasilinear wave equation
- 4 Control of linear heat equation

A 3 3 4

Control of wave equation

Let T > 0, $\Omega \subset \mathbb{R}^n$ is a bounded domain with smooth boundary $\partial \Omega$. $\omega \neq \emptyset$ is an open subset of Ω , $\Gamma_1 \neq \emptyset$ is an open subset of $\partial \Omega$. χ_{ω} and χ_{Γ_1} denote the characteristic functions of ω and Γ_1 . Consider the following wave system:

(1)
$$\begin{cases} y_{tt} - \Delta y = \chi_{\omega} u, & (t, x) \in (0, T) \times \Omega, \\ y(t, x) = 0, & (t, x) \in (0, T) \times \partial \Omega, \\ y(0, x) = y_0(x), y_t(0, x) = y_1(x), & x \in \Omega. \end{cases}$$

Exact controllability problem:

Given initial data (y_0, y_1) and target data (y^0, y^1) in some space, can we choose u in suitable space such that

$$y(T, x) = y^{0}(x), y_{t}(T, x) = y^{1}(x), x \in \Omega?$$

Exact null controllability problem:

Given initial data (y_0, y_1) in some space, can we choose u in suitable space such that

$$y(T, x) = 0, y_t(T, x) = 0, x \in \Omega?$$

< ロ > < 同 > < 回 > < 回 > < □ > <

Observability

The controllability of (1) is equivalent to the observability of the following system

(2)
$$\begin{cases} v_{tt} - \Delta v = 0, & (t, x) \in (0, T) \times \Omega, \\ v(t, x) = 0, & (t, x) \in (0, T) \times \partial \Omega, \\ v(T, x) = v^{0}(x), v_{t}(T, x) = v^{1}(x), & x \in \Omega. \end{cases}$$

The observability inequality:

$$\frac{1}{2} \Big(\|v^1\|_{L^2(\Omega)}^2 + \|\nabla v^0\|_{L^2(\Omega)}^2 \Big) \leqslant D \int_0^T \|v_t\|_{L^2(\omega)}^2 dt.$$

- 4 同 🕨 - 4 目 🕨 - 4 目

Multiplier geometric condition(MGC)

Assume that $\partial \Omega = \Gamma_0 \cup \Gamma_1$ and Γ_0, Γ_1 are nonempty. Furthermore there exists an x_0 such that

$$(x - x^{0}) \cdot \nu(x) < 0, \forall x \in \Gamma_{0}$$
$$(x - x^{0}) \cdot \nu(x) \ge 0, \forall x \in \Gamma_{1}$$

Figure: example

- 4 同 2 4 日 2 4 日 2

Geometric Control Condition(GCC)

Figure: GCC condition (L. Miller)

There exists T > 0 such that every geodesic traveling at speed 1 meets ω or Γ_1 (except for diffractive points) in (0, T).

Theorem (Bardos-Lebeau-Rauch (1992))

Assume that GCC holds. Then the system (1) is exactly controllable on $L^2 \times H^{-1}$.

Question: How to construct an exact control?

イロト イポト イヨト イヨト

э

HUM

Theorem (J.-L. Lions)

Assume that Ω satisfies MGC. The system (1) is exactly controllable on $L^2 \times H^{-1}$.

The control *u* satisfies

(3)
$$\begin{cases} u_{tt} - \Delta u = 0, & (t, x) \in (0, T) \times \Omega, \\ u(t, x) = 0, & (t, x) \in (0, T) \times \partial \Omega, \\ u(T, x) = u^{0}(x), \ u_{t}(T, x) = u^{1}(x), & x \in \Omega. \end{cases}$$

J.-L. Lions use a solution of wave equation to control (1), taking the final data to minimize the cost.

(日) (同) (日) (日) (日)

Linearization

Consider the following control problem of damped linear wave equation

(4)
$$\begin{cases} y_{tt} + y_t - \Delta y = \chi_{\omega} u, & (t, x) \in (0, T) \times \Omega, \\ y(t, x) = 0, & (t, x) \in (0, T) \times \partial \Omega, \\ y(0, x) = y_0(x), \ y_t(0, x) = y_1(x) & x \in \Omega. \end{cases}$$

We give a new method to prove the null controllability of system (4).

- 4 同 🕨 - 4 目 🕨 - 4 目

Contraction mapping principle

We take
$$u = 2\chi_{\omega} \cdot z_t$$
, where z satisfies

(5)
$$\begin{cases} z_{tt} - z_t - \Delta z = 0, & (t, x) \in (0, T) \times \Omega, \\ z(t, x) = 0, & (t, x) \in (0, T) \times \partial \Omega, \\ z(T, x) = z^0(x), \ z_t(T, x) = z^1(x), & x \in \Omega. \end{cases}$$

Then we define a map

$$\mathcal{F}: (z^0, z^1) \mapsto (y(T) + z^0, -y_t(T) + z^1).$$

/⊒ > < ∃ >

By the observability inequality, we can prove that ${\ensuremath{\mathcal F}}$ is a contraction map in the set

$$\left\{ \left\| (z^0, z^1) \right\|_{H_0^1(\Omega) \times L^2(\Omega)}^2 \leqslant M(D) \left\| (y_0, y_1) \right\|_{H_0^1(\Omega) \times L^2(\Omega)}^2 \right\}$$

for some constant M=M(D) large enough. So it has a fixed point, satisfying $y(T)=0,\ -y_t(T)=0,$

Since that we can find (z^0, z^1) such that $y(T) = 0, -y_t(T) = 0$, then u is the desired control function.

イロト イポト イラト イラト

Galerkin method

Firstly, we take the standard orthonormal basis $\{\varphi_j\}_{j=1}^\infty$ of $L^2(\Omega)$, such that

$$\left\{ \begin{array}{l} -\Delta\varphi_j = \lambda_j\varphi_j \\ \varphi_j|_{\partial\Omega} \equiv 0 \end{array} \right.$$

Let
$$y_N = \sum_{j=1}^N g_{jN}(t)\varphi_j$$
, $v_N = \sum_{j=1}^N h_{jN}(t)\varphi_j$ satisfy the following

initial value problems

(6)
$$\begin{cases} \left(\partial_t^2 y_N - \Delta y_N + \partial_t y_N - \chi \cdot \partial_t v_N, \varphi_i\right)_{L^2} = 0, \\ t = 0 : g_{jN} = (y_0, \varphi_j)_{L^2}, \ g'_{jN} = (y_1, \varphi_j)_{L^2} \end{cases}$$

(7)
$$\begin{cases} \left(\partial_t^2 v_N - \Delta v_N - \partial_t v_N, \varphi_i\right)_{L^2} = 0, \\ t = T : h_{jN} = a_j, \ h'_{jN} = b_j \end{cases}$$

So we can define the following map

(8)
$$\tilde{\mathcal{F}}: (v_N(T), \partial_t v_N(T)) \mapsto (y_N(T), \partial_t y_N(T))$$

or equivalently

(9)
$$\mathcal{F}: (a_1, \cdots, a_N, b_1, \cdots, b_N) \\ \mapsto (g_{1N}(T), \cdots, g_{NN}(T), g'_{1N}(T), \cdots, g'_{NN}(T))$$

By the well-posedness result of linear system, the above map is continuous from \mathbb{R}^{2N} to itself. Goal:to prove that \mathcal{F} has a zero point.

By Brouwer fixed point theorem, we can prove the following lemma.

Lemma

If there exists r > 0, such that the continuous map $\mathcal{F} : \mathbb{R}^m \to \mathbb{R}^m$ satisfies

$$x \cdot \mathcal{F}(x) \ge 0, \qquad \forall \ |x| = r$$

then there exists $x_0 \in B_r$ s.t. $\mathcal{F}(x_0) = 0$.

We need to estimate

$$J_1 \triangleq \int_{\Omega} \partial_t y_N(T) \partial_t v_N(T) + \nabla y_N(T) \cdot \nabla v_N(T) dx$$

(日) (同) (三) (三)

Denote $E(u(t)) = ||u(t)||_{H_0^1}^2 + ||u_t(t)||_{L^2}^2$, by the standard energy estimate of y_N and v_N , as well as the observability inequality

$$\frac{1}{2} \Big(\|v_t(T)\|_{L^2(\Omega)}^2 + \|\nabla v(T)\|_{L^2(\Omega)}^2 \Big) \le D \int_0^T \|v_t\|_{L^2(\omega)}^2 dt$$

we obtain that

Property

If $E(v_N(T))$ is large enough, then $J_1 \ge 0$.

which means $x \cdot \mathcal{F}(x) \ge 0$ in the lemma, so \mathcal{F} has a zero point.

・ロト ・同ト ・ヨト ・ヨト

By energy estimate, $\{\partial_t v_N\}_{N=1}^{\infty}$ is bounded in $L^2(0,T;H^1(\omega))$, thus has a subsequence that converges weakly, whose limit is the desire control function. On the other hand,

$$\{y_N\}_{N=1}^{\infty} \subset L^{\infty}(0,T;H_0^1(\Omega))$$
$$\{\partial_t y_N\}_{N=1}^{\infty} \subset L^{\infty}(0,T;L^2(\Omega))$$

is bounded too, and converge to the solution. Thus we have the null controllability.

伺 ト イ ヨ ト イ ヨ

Consider the following semilinear wave system:

(10)
$$\begin{cases} y_{tt} - \Delta y = f(y) + \chi_{\omega} u, & (t, x) \in (0, T) \times \Omega, \\ y(t, x) = \chi_{\Gamma_1} h(t, x), & (t, x) \in (0, T) \times \partial \Omega, \\ y(0, x) = y_0(x), \ y_t(0, x) = y_1(x), & x \in \Omega. \end{cases}$$

Internal control ($h \equiv 0$):

- If f(s) behaves like $-slog^p(1+|s|), 1 \le p \le 2$ as $|s| \to \infty$, the system is exactly controllable (see E. Zuazua(1993) for 1-D; X. Fu, J. Yong and X. Zhang (2007) for n-D)
- If $f(y) = -y^p$, n = 3, the system is exactly controllable when $\omega = \Omega/B(x_0, r)$ (B. Dehman, G. Lebeau, E. Zuazua (2003) for p < 5 or C. Laurent (2011) for p = 5).

Boundary control $(u \equiv 0)$:

If f ∈ W^{1,∞}_{loc}(ℝ) is a locally Lipschitz function, the system is exactly controllable (E. Zuazua (1990)).

(日)

Consider the following internal control problem

(11)
$$\begin{cases} y_{tt} + f(y_t) - \Delta y = \chi_{\omega} u, & (t, x) \in (0, T) \times \Omega, \\ y(t, x) = 0, & (t, x) \in (0, T) \times \partial \Omega, \\ y(0, x) = y_0(x), \ y_t(0, x) = y_1(x) & x \in \Omega. \end{cases}$$

Theorem (Y. Cui, P. Lu and Z (preprint))

Let $f \in C(\mathbb{R})$ satisfies f(0) = 0, $|f(a) - f(b)| \leq L|a - b|$, and there exists $L > \tilde{L} > 0$, s.t.,

$$(a-b)(f(a) - f(b)) \ge \tilde{L}(a-b)^2.$$

Assume that ω satisfies GCC, then (11) is null controllable provided that $2D(L-\tilde{L})^2 < L\tilde{L}^2$.

The proof is based on Galerkin method.

Quasilinear wave equation, boundary control

- see T. Li and L. Yu (06) for 1-D case;
- see Z. Lei and Z (08) or Yao (2010) for 2, 3-D case;

・ 同 ト ・ ヨ ト ・ ヨ

Main result

Consider the following system

(12)
$$\begin{cases} y_{tt} - \Delta y = F(y, y_t, \nabla y, \nabla^2 y) + \chi_{\omega} u(t, x), & (t, x) \in (0, T) \times \Omega \\ y(t, x) = 0, & (t, x) \in (0, T) \times \partial \Omega \\ y(0, x) = y_0(x), \ y_t(0, x) = y_1(x) & x \in \Omega. \end{cases}$$

Theorem (Y. Cui, P. Lu and Z (preprint))

Assume that $F(y, y', y'') = O(|y|^2 + |y'|^2 + |y''|^2)$ and Ω satisfies MGC, $\omega = \Omega \cap O_{\epsilon}(\Gamma_1)$, then the system (12) is locally null controllable.

The proof is based on Picard iteration (Contraction mapping principle).

- 4 同 6 4 日 6 4 日 6

Consider the following damped wave system

(13)
$$\begin{cases} y_{tt} - \Delta y + y_t = F(y, y', y'') + \chi_{\omega}(x)u(t, x), & (t, x) \in (0, T) \times \Omega, \\ y(t, x) = 0, & (t, x) \in (0, T) \times \partial\Omega, \\ y(0, x) = y_0(x), \ y_t(0, x) = y_1(x) & x \in \Omega. \end{cases}$$

Our goal is to obtain the controllability of (13) now!

Case without damping

Consider the internal control problem of linear wave equation

$$\begin{cases} y_{tt} - \Delta y = \chi_{\omega}(x)u(t, x), & (t, x) \in (0, T) \times \Omega, \\ y(t, x) = 0, & (t, x) \in (0, T) \times \partial \Omega, \\ y(0, x) = y_0(x), \ y_t(0, x) = y_1(x) & x \in \Omega. \end{cases}$$

Let $y = e^t \tilde{y}$ and $u = e^t \tilde{u}$, then the system is transformed into a system with damping.

(4月) (日) (日)

Locally controllability of quasi-linear system

In the quasi-linear case, firstly we write

$$\begin{cases} y_{tt} + b_0 y_t - \sum_{i,j=1}^n a_{ij} y_{x_i x_j} = \tilde{b} y + \sum_{i=1}^n b_i y_{x_i} + \chi u, \\ y(0,x) = y_0(x), \ y_t(0,x) = y_1(x), \\ y(t,x) = 0, \qquad x \in \partial\Omega, \end{cases}$$

where χ is a smooth cut-off function on ω , $\tilde{b}, b_0, a_{ij}, b_i$ are functions of $y, y_t, \nabla y$, satisfying

$$a^{ij} - \delta_{ij}, \ b_0 - 1, \ b_k, \ \tilde{b} \in X_{C,s,\varepsilon},$$

where

$$\begin{aligned} X_{C,s,\varepsilon} &= \Big\{ f \in L^{\infty}(0,T;L^{2}(\Omega)) : \left\| \partial_{t}^{j} \nabla^{k} f(t) \right\|_{L^{2}(\Omega)} \leqslant C\varepsilon, \\ &\forall \ j,k \in \mathbb{N}, \ j+k \leqslant s, \ \forall \ t \in [0,T] \Big\}, \end{aligned}$$

Picard iteration

We establish the following iteration scheme: Put $(z^{(0)}, y^{(0)}) \equiv 0$, knowing $(z^{(\alpha-1)}, y^{(\alpha-1)})$, we define $(z^{(\alpha)}, y^{(\alpha)})$ as follows

$$\begin{cases} y_{tt}^{(\alpha)} + b_0^{(\alpha-1)} y_t^{(\alpha)} - \sum_{i,j=1}^n a_{ij}^{(\alpha-1)} y_{x_i x_j}^{(\alpha)} - \tilde{b}^{(\alpha-1)} y^{(\alpha)} - \sum_{i=1}^n b_i^{(\alpha-1)} y_{x_i}^{(\alpha)} \\ = -2\chi \cdot z_t^{(\alpha)}(t), \\ y^{(\alpha)}(0,x) = y_0(x), \ y_t^{(\alpha)}(0,x) = y_1(x), \\ y^{(\alpha)}(t,x) \equiv 0, \qquad x \in \partial\Omega. \end{cases}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\begin{cases} z_{tt}^{(\alpha)} - b_0^{(\alpha-1)} z_t^{(\alpha)} - \sum_{i,j=1}^n a_{ij}^{(\alpha-1)} z_{x_i x_j}^{(\alpha)} - \tilde{b}^{(\alpha-1)} z^{(\alpha)} - \sum_{i=1}^n b_i^{(\alpha-1)} z_{x_i}^{(\alpha)} = 0, \\ z_{tt}^{(\alpha)}(T,x) = y^{(\alpha-1)}(T,x) + z^{(\alpha-1)}(T,x), \\ z_t^{(\alpha)}(T,x) = y_t^{(\alpha-1)}(T,x) + z_t^{(\alpha-1)}(T,x), \\ z^{(\alpha)}(t,x) = 0, \quad x \in \partial\Omega, \end{cases}$$

where $\tilde{b}^{(\alpha-1)}, b_0^{(\alpha-1)}, a_{ij}^{(\alpha-1)}, b_i^{(\alpha-1)}$ are functions of $y^{(\alpha-1)}, y_t^{(\alpha-1)}, \nabla y^{(\alpha-1)}$.

The order is

$$(z^{(0)}, y^{(0)}) \to \dots \to z^{(\alpha-1)} \to y^{(\alpha-1)} \to z^{(\alpha)} \to y^{(\alpha)} \to \dots$$

・ロト ・四ト ・ヨト ・ヨト

3

Consider the internal control problem of linear heat equation

$$\begin{cases} y_t - \Delta y = \chi_{\omega}(x)u(t, x), & (t, x) \in (0, T) \times \Omega, \\ y(t, x) = 0, & (t, x) \in (0, T) \times \partial \Omega, \\ y(0, x) = y_0(x) \neq 0, & x \in \Omega. \end{cases}$$

Our goal: to find a function u such that $y(T) \equiv 0$.

(日) (同) (三) (三)

We choose
$$u = \frac{D^{\frac{1}{2}} \|y_0\|_{L^2} v}{(\int_0^T \int_\omega |v|^2 dx dt)^{\frac{1}{2}}}$$
, where

$$\begin{cases} v_t + \Delta v = 0, \qquad (t, x) \in (0, T) \times \Omega, \\ v(t, x) = 0, \qquad (t, x) \in (0, T) \times \partial\Omega, \\ v(T, x) = v^0(x) \neq 0, \qquad x \in \Omega, \end{cases}$$

satisfies the observability inequality

$$\|v(0)\|_{L^2}^2 \leqslant D \int_0^T \int_\omega |v|^2 dx dt.$$

< ロ > < 同 > < 回 > < 回 >

Thanks for your attention!