B. Després (LJLL-SU+MEGAVOLT-INRIA)

Differentiability Properties of Non-smooth Functions Used in Neural Networks

B. Després (LJLL-SU+MEGAVOLT-INRIA)

Erice p. 1 / 17

Neural Networks

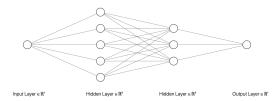
NNs and

Two application

Take a fully-connected feed-forward neural network function $f: \mathbb{R}^{a_0} \to \mathbb{R}^{a_{\ell+1}}$

$$f = f_{\ell} \circ S_{\ell} \circ f_{\ell-1} \circ S_{\ell-1} \circ \cdots \circ f_1 \circ S_1 \circ f_0$$

where $f_i(x_i) = W_i x_i + b_i \in \mathbb{R}^{a_{i+1}} (x_i \in \mathbb{R}^{a_i})$ is linear and $S_i \in C^0(\mathbb{R})$ is a non linear activation function $0 \le S_i'(x) \le 1$.



- Typically ReLU function $S_i(x) = R(x) = \max(0, x)$ is an extremely popular activation function used in production codes.
- *Max-pooling* used in **convolutional neural networks** is based on the maximum function $(a, b, ...) \mapsto \max(a, b, ...) \in \mathbb{R}$.

Autodiff

NNs and

Two application

We need to differentiate f:

- with respect to x: for the assembly of the cost function for approximation of PDEs (DeepRitz, PINNS, VPINNS, ..).
- with respect to the weights (W_i, b_i) : for training. This is performed with SGD and autodiff.
- with respect to the weights (W_i, b_i) inside a numerical hybrid model. For example NeuralGCM and future hybrid transport models.

Principle

All derivatives are exactly calculated with automatic differentiation=chain rule=backprop which is the main tool for composition of functions.

This is the key technic in Tensorflow, Pytorch, Jax, ScikiLearn, ...

The standard chain rule hold for C^1 functions : take $J = v \circ u$ where $v, u \in C^1$, then

$$\nabla J = \nabla v \circ u \ \nabla u \Longleftrightarrow \nabla J(W) = \nabla v(u(W)) \ \nabla u(W).$$

Erice p. 3 / 17

Regularity of NNs

NNs and

Two application

• Clearly $f \in \mathsf{Lip}(\mathbb{R}^{a_0} : \mathbb{R}^{a_{\ell+1}})$.

The Rademacher theorem states $\nabla f \in L^{\infty}(\mathbb{R}^{a_0} : \mathcal{M}_{a_{\ell+1},a_0}(\mathbb{R}))$.

• ML is universally based on the chain rule

$$\nabla f(x) = W_{\ell} B_{\ell}(x) W_{\ell-1} B_{\ell-1}(x) \dots W_1 B_1(x) W_0$$

which is non ambiguous for C^1 activation functions.

• Everything is Lipschitz-continuous, one can write

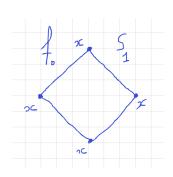
$$B_r = \nabla S_r \circ \cdots \circ S_1 \circ f_0 \in L^{\infty}(\mathbb{R}^{a_0} : \mathcal{M}_{a_r,a_0}(\mathbb{R})).$$

 \Rightarrow It seems there is no problem.

Why there is a problem (Murat-Trombetti 2003)

NNs and

Two applications



It is an academic one-hidden-layer CNN : $f_0 : \mathbb{R} \to \mathbb{R}^2$ is linear

$$f_0(x) = (x, x) = W_0 x$$
 with $W_0 = (1, 1)$

and S_1 is a max-pooling function over two values

$$S_1(y) = \max(y_1, y_2)$$
, where $y = (y_1, y_2) \in \mathbb{R}^2$.

Of course
$$f(x) = x$$
 and $f'(x) = 1$.

Erice p. 5 / 17

Gradients

NNs and autodiff

Two application

The gradient of f_0 is $\nabla f_0 = W_0 = (1,1)$.

The gradient of S_1 is defined almost everywhere

$$\begin{cases} \text{ if } y_1 > y_2 & \nabla S_1(y) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathbb{R}^2, \\ \text{ if } y_1 < y_2 & \nabla S_1(y) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \in \mathbb{R}^2, \\ \text{ if } y_1 = y_2 & \nabla S_1(y) \text{ is not defined (in } \mathbb{R}^2). \end{cases}$$

Therefore the chain rule becomes meaningless

$$1 = \langle \nabla S_1 \circ f_0(x), (1,1) \rangle.$$

Erice

The key issue is: the pre-image of sets with zero measure might be sets with non zero measure.

A fundamental result

NNs and

Two applications

F. Murat and C. Trombetti. A chain rule formula for the composition of a vector-valued function by a piecewise smooth function. 2003.

Consider a finite decomposition of $\mathbb{R}^{\mathfrak{a}}$ in Borel sets or Borel pieces P^{α}

$$\mathbb{R}^{a} = \bigcup_{\alpha} P^{\alpha}, \qquad P^{\alpha} \cap P^{\beta} = \emptyset \text{ for } \alpha \neq \beta.$$

For the sake of simplicity, replace Borel by piecewise affine.

Definition

A Lipschitz-continuous function $f: \mathbb{R}^a \to \mathbb{R}^b$ is

$$C_{\rm DW}^1 = C^1$$
 piecewise

if there exists Borel pieces P^{α} and functions $f^{\alpha} \in \operatorname{Lip}(\mathbb{R}^a : \mathbb{R}^b) \cap C^1(\mathbb{R}^a : \mathbb{R}^b)$ such that

$$f(x) = \sum_{\alpha} \mathbf{1}_{P^{\alpha}}(x) f^{\alpha}(x) \quad \forall x \in \mathbb{R}^{a}.$$

Here
$$f^{\alpha}(x) = f(x)$$
 for all $x \in P^{\alpha}$ and $\nabla f^{\alpha} \in L^{\infty}(\mathbb{R}^{a} : \mathcal{M}_{b,a}(\mathbb{R})) \cap C^{0}(\mathbb{R}^{a} : \mathcal{M}_{b,a}(\mathbb{R})).$

p. 7 / 17

Associated gradients

NNs and

Two application

Definition (Associated gradients)

We say that the gradient associated to the representation is

$$\widetilde{\nabla} f(x) = \sum_{\alpha} \mathbf{1}_{P^{\alpha}}(x) \nabla f^{\alpha}(x) \in \mathcal{M}_{b,a}(\mathbb{R}) \quad \forall x \in \mathbb{R}^{a}.$$

In brief it is an associated gradient.

The associated gradient is a real $b \times a$ matrix defined everywhere, that is for all $x \in \mathbb{R}^a$.

The associated gradient is non unique because it depends on the representation.

Extremely close to the notion of intentional derivative:

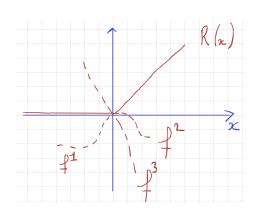
Lee-Yu-Rival-Yang, On Correctness of Automatic Differentiation for Non-Differentiable Functions, 2020.

Erice p. 8 / 17

ReLU=R

NNs and autodiff

Two applications



$$P^1 =]0, \infty[$$
 and $f^1(x) = x$,

$$P^2 =]-\infty, 0[$$
 and $f^2(x) = 0$

$$\begin{split} P^1 = &]0, \infty [\text{ and } f^1(x) = x, \\ P^2 = &]-\infty, 0 [\text{ and } f^2(x) = 0, \\ P^3 = & \{0\} \text{ and } f^3 \text{ is any } C^1 \text{ function.} \end{split}$$

So
$$\widetilde{R}'(x) = 1$$
 for $x > 0$, $\widetilde{R}'(x) = 0$ for $x < 0$ and $\widetilde{R}'(0) = \text{any } z \in \mathbb{R}$.

Murat-Trombetti Theorem $(u \in H^1)$

NNs and

Two application

Theorem (D. TMLR 2025, in the context of ML)

Consider two functions. The first one $u \in \operatorname{Lip}(\mathbb{R}^a : \mathbb{R}^b)$ is Lipschitz-continuous. The second one $v \in \operatorname{Lip}(\mathbb{R}^b : \mathbb{R}^c)$ is Lipschitz-continuous and C^1_{pw} with a representation with an associated gradient.

Then the chain rule identity holds in $L^{\infty}(\mathbb{R}^a:\mathcal{M}_{c,a}(\mathbb{R}))$

$$\nabla(v \circ u) = \widetilde{\nabla}v \circ u \ \nabla u$$

where $\widetilde{\nabla} v \circ u(x) = \widetilde{\nabla} v(u(x))$ for all $x \in \mathbb{R}^a$.

- The proof is ultimately based on a Stampacchia formula.
- Borel pieces is the optimal regularity.
- An associated gradient is a representative of the gradient in the sense of distributions.

p. 10 / 17

An algebra

NNs and

Two applications

Theorem (D. TMLR 2025)

Consider a Neural Network function f with all functions f_r and S_r Lipschitz-continuous for $1 \le r \le \ell$.

Assume that **all** f_r and S_r are C_{pw}^1 with an associated gradient.

Then f itself has an associated gradient

$$\widetilde{\nabla} f = W_{\ell} \widetilde{B}_{\ell}(x) W_{\ell-1} \widetilde{B}_{\ell-1}(x) \dots W_1 \widetilde{B}_1(x) \widetilde{W}_0 \quad a.e. \ x \in \mathbb{R}^a$$

where the right hand side is defined for all $x \in \mathbb{R}^a$, and

$$\widetilde{B}_r = \widetilde{\nabla} S_r \circ \cdots \circ S_1 \circ f_0 \in \mathcal{M}_{a_r}(\mathbb{R}) \text{ for all } x \in \mathbb{R}^a.$$

The space of functions $\operatorname{Lip}(\mathbb{R}^a : \mathbb{R}^a) \cap C^1_{\operatorname{pw}}(\mathbb{R}^a : \mathbb{R}^a)$ is an algebra.

So far, this space does not come with a metric.

Erice p. 11 / 17

I : Boustany example (better say Boustany paradox)

NNs and

Two applications

Ryan Boustany. On the numerical reliability of nonsmooth autodiff: a maxpool case study. Transactions on Machine Learning Research, 2024. URL https://arxiv.org/abs/2401.02736

Bolte and Pauwels. Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning. Mathematical Programming, 188:19-51, 2021.

For x = (1, 2, 3, 4) assemble in Pytorch the function $t \mapsto f(t) = \max_1(tx) - \max_2(tx)$

```
def max1(x):
    res = x[0]
    for i in range(1, a):
    if x[i] > res:
        res = x[i]
    return res
```

def max₂(x):
return torch.max(x)

Table – Script of the functions max_1 and max_2

NNs and

Two applications

Pytorch (TensorFlow, Scikilearn, ...,)

t	-1	-0.5	-0.01	0	0.01	0.5	1
f(t)	0	0	0	0	0	0	0
$ \begin{array}{c c} t\\f(t)\\f'(t) \end{array} $	0	0	0	-1.5	0	0	0

Table – PyTorch-autodiff of f(t)

Solution of the paradox : representations and associated gradients are different $% \left(1\right) =\left(1\right) \left(1\right)$

$$\widetilde{\nabla} \, \mathop{\text{max}}_1(0,0,0,0) = (1,0,0,0) \, \text{ and } \, \widetilde{\nabla} \, \mathop{\text{max}}_2(0,0,0,0) = \left(\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4}\right)$$

Remark

Sub-differential theory and Clarke's generalized gradients do not help that much to describe this.

II: Hybrid Models in meteorology

L'IA et les mathématiques pour la météorologie et la climatologie (2) - 2024-2025 Neural-GCM (hybrid model) "Dynamics" "Physics" Primitive equations Discretization $\frac{\partial \rho}{\partial r} + \nabla \cdot (\rho \mathbf{V}) = 0$ $\frac{D\mathbf{V}}{Dt} = -2\mathbf{\Omega} \times \mathbf{V} - \mathbf{\Omega} \times (\mathbf{\Omega} \times \mathbf{r}) - \nabla \phi_a - \alpha \nabla p - \alpha \nabla \cdot \mathbf{F}$ $\frac{D}{D\epsilon}(c_rT) + p\frac{D\alpha}{D\epsilon} = -\alpha \nabla \cdot (\mathbf{R} + \mathbf{F}_s) + LC + \delta$ $\frac{Dq_v}{Dt} = g \frac{\partial F_{q_v}}{\partial p} - C$ Accelerate this stuff (TPU + ML) Learn this stuff from data Features: Learns mechanistic "Physics" from data that is integrated with "Dynamics" (physics priors) Preserves time continuity and causal structure of physics-based GCM Challenges:

Two applications

Michael Brenner (Harvard+Google)

Neural general circulation models for weather and climate, Kochkov-et-al, Nature, 2024.

Differentiable code & ML/Numerics integration

Erice p. 14 / 17

An attempt to formalize Hybrid Models

NNs and

Two applications

$$\begin{cases} \partial_t U + \mathcal{L}(U, \partial_x U, \partial_{xx} U, \dots) = S_W^{\mathrm{NN}}(\alpha), & W \text{ contains all NN weights,} \\ U(x, 0) = \beta, & \text{initial data at time } t = 0, \end{cases}$$

where one has a large dataset of observations

$$\mathcal{D} = \{(\alpha_i, \beta_i, \gamma_i) \mid i = 1, 2, \dots, N\} \subset \mathbb{R}^{m+n+n}.$$

The cost function evaluated at given final time T > 0 is something like

$$J(W) = \frac{1}{N} \sum_{i} \int_{x \in \Omega} |U(x, T : \alpha_i, \beta_i, W) - \gamma_i|^2 dx \qquad \text{(+ many other terms)}.$$

Principle

The sources $\alpha\mapsto \mathcal{S}_W^{\mathrm{NN}}(\alpha)$ must be compatible with autodiff.

The discrete solution must also be compatible with autodiff.

Erice p. 15 / 17

Transport (essential for CFD)

NNs and

Two applications

• $t \ge 0$, $x \in \mathbb{R}$: $\partial_t u + a \partial_x u = 0$. The upwind scheme is

$$\frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}+a\frac{u_{j+\frac{1}{2}}^{n}-u_{j-\frac{1}{2}}^{n}}{\Delta x}=0,$$

where $u_{j+\frac{1}{2}}^n = G_a(u_j^n, u_{j+1}^n)$ follows the characteristic lines

$$G_a(\alpha, \beta) = \alpha \text{ if } a > 0, \ G_a(\alpha, \beta) = \beta \text{ if } a \leq 0.$$

The time steps are composed one after the other.

• What matters is the regularity of the flux

$$F(a, \alpha, \beta) = aG_a(\alpha, \beta) = R(a)\alpha - R(-a)\beta.$$

The function F is (loc-)Lipschitz and C_{DW}^1

Principle

ReLU and non smooth activation functions are everywhere in CFD and transport models.

One more scenario: autodiff of high order schemes

NNs and

Two applications

Consider the 2nd order Lax-Wendroff scheme

$$\frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}+a\frac{u_{j+\frac{1}{2}}^{n}-u_{j-\frac{1}{2}}^{n}}{\Delta x}=0,$$

where the Courant number is $\nu = |a| \frac{\Delta t}{\Delta x}$ and

$$\begin{cases} a \ge 0 & u_{j+\frac{1}{2}} = u_j + \frac{1}{2}(1-\nu) \mathsf{minmod}(u_{j+1} - u_j, u_j - u_{j-1}), \\ a < 0 & u_{j+\frac{1}{2}} = u_{j+1} + \frac{1}{2}(1-\nu) \mathsf{minmod}(u_{j+1} - u_j, u_j - u_{j-1}). \end{cases}$$

One can check that

$$minmod(x, y) = R(-max(-x, -y)) - R(-max(x, y)).$$

Lemma

The 2nd order Lax Wendroff scheme satisfies the autodiff requirements inherited from the C_{pw}^1 framework.

Erice p. 17 / 17