

Building reliable and trustworthy surrogate models

Dr. Dominik Penk - Schaeffler Advanced Innovation - SHARE at FAU

Personal Introduction

DR. DOMINIK PENK

Applied Research Engineer

Advanced Innovation SHARE at FAU

penkdmi@schaeffler.com

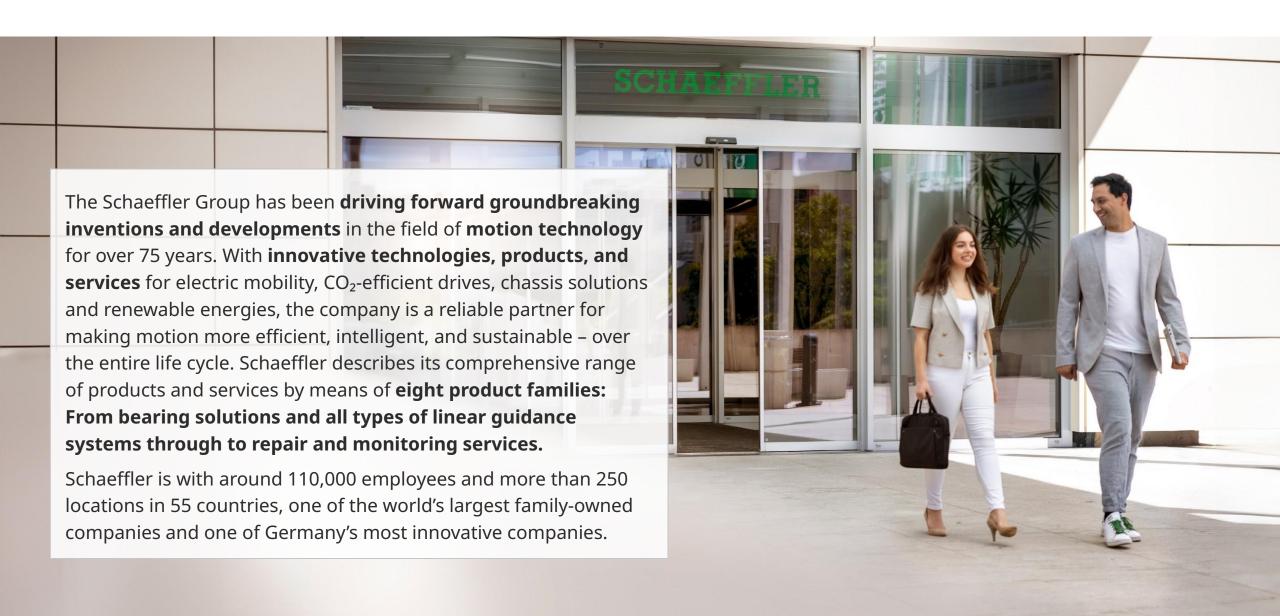
• Background:

- 2017: master's degree in Computer Science
- 2023: PhD in the field of computer vision specifically for quality assessment in production
- Joined Schaeffler and the SHARE at FAU team in August 2023

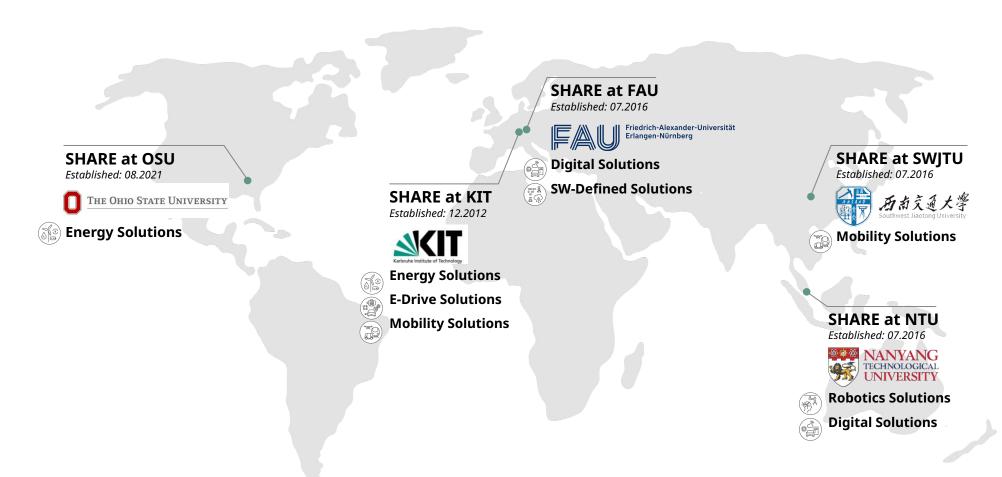
• Role and research interest:

- Identifying, planning/aligning/budgeting, and managing research cooperations with focus on digitalization and ML
- Focus on applied machine learning topics, particularly computer vision, physics-guided AI, and robust ML

Schaeffler Group – We pioneer motion



SHARE Network



SHAREs are part of innovation clusters with own responsibility for innovative projects

SHARE at FAU Team

TEAM MEMBERS

Dr. Christoph Strohmeyer 06/2018

Dr. Maik Horn 04/2020

Dr. Michael Schlotter 10/2022

Dr. Dominik Riedelbauch 01/2023

Dr. Dominik Penk 08/2023

Use Case

Sobolev Training

3 Reliability Monitoring

AGENID

Use Case

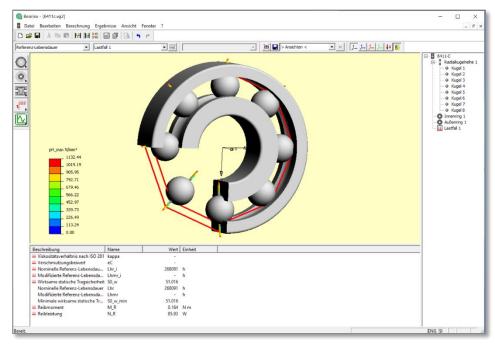
Sobolev Training

Reliability Monitoring

AGENID

Goal – Encapsulating Bearing Simulations

Bearinx – Simulation tool for roller bearings

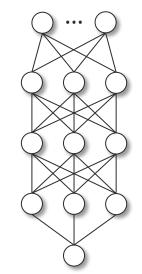


- Precise simulations based on long-standing company expertise
- Complex simulations with long simulation times (particularly for large bearings)

Data-fit Surrogate Models

Input features: load state, e.g.,

- forces, moments
- rotational speed



"obfuscated" service models

Customers

faster component models

System Simulation

Prediction targets: e.g.,

- frictional torque
- equivalent load

Challenges – AI in Application

Hard Challenges

Data generation costs

- Simulation slow
- Requires expert

Data sparsity

- Function to approximate; $\mathbb{R}^7 \mapsto \mathbb{R}$
- Dataset Size: 5000

~ 3.4 samples per input dimension

Manifold assumption

- Does not apply
- State-of-the-art outlier detection methods do not work

Soft Requirements

Useable by non-experts

- Training handled by engineers
- Surrogate models used by engineers

Solution must be trustworthy

- Results must be correct
- Indication of uncertainty
- Training should be fully automated
- Result uncertainty must be communicated clearly

Use Case

2 Sobolev Training

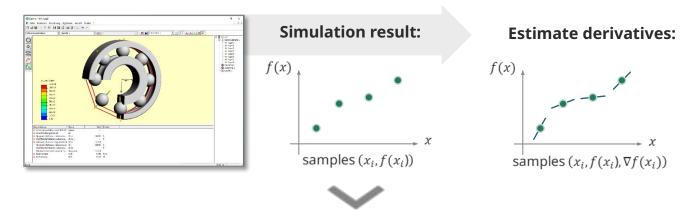
Reliability Monitoring

AGENID

Approach

Sobolev training = Neural Network training using additional information on function gradients in each sample point [1]

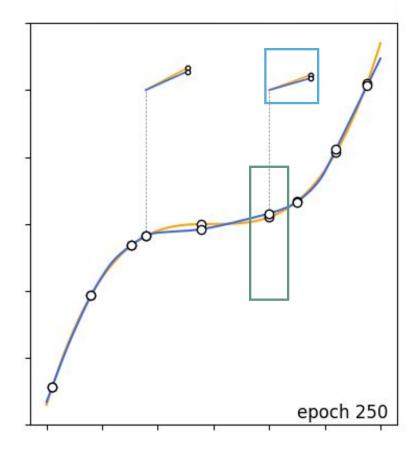
Augment data with gradient of target w.r.t. input features



Train with loss that penalizes wrong derivatives (i.e., wrong function shape!):

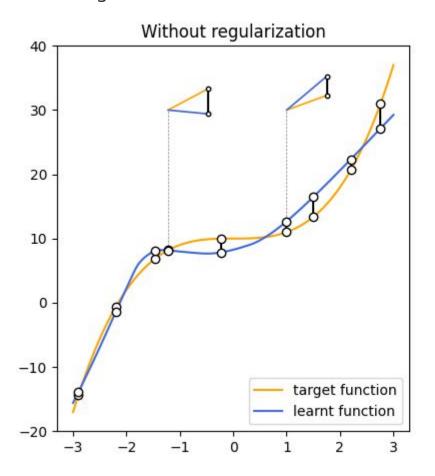
$$e_{\text{ST}} = e_{\text{VT}} + \beta \cdot \frac{1}{N} \sum_{i=1}^{N} \left(\frac{\partial \ net_{W}(x)}{\partial x_{i}} - \frac{\partial \ f(x)}{\partial x_{i}} \right)^{2}$$

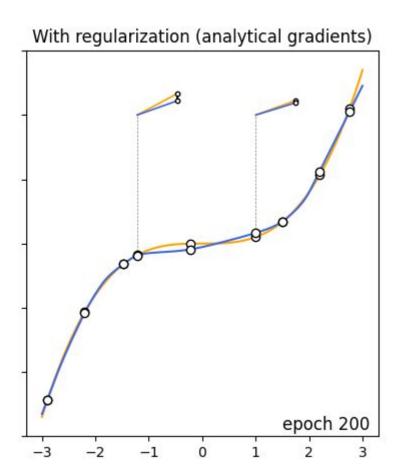
[1] https://link.springer.com/chapter/10.1007/978-3-030-46147-8 24



Sobolev training - Comparison

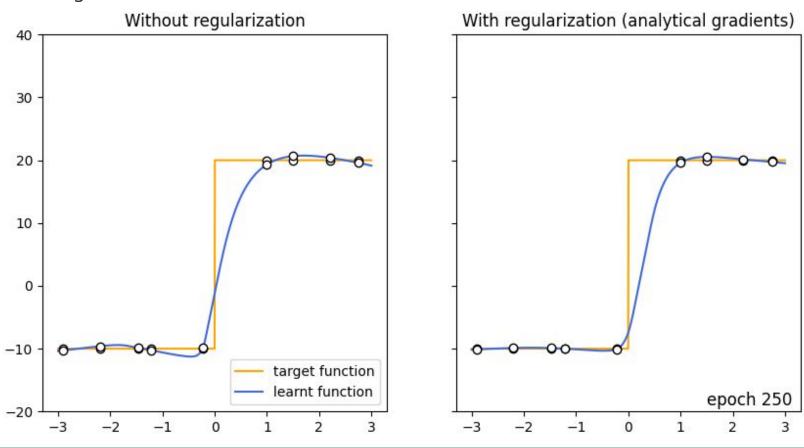
Examples of Sobolev training effects:





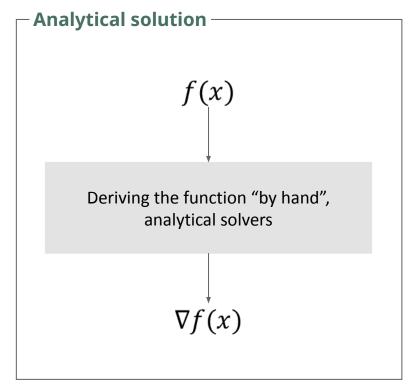
Sobolev training - Comparison

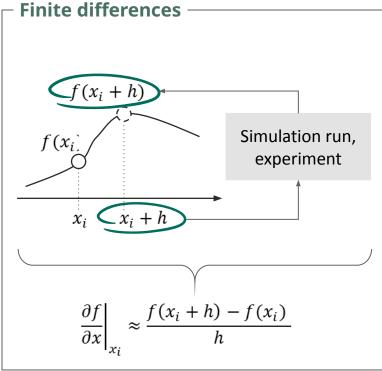
Examples of Sobolev training effects:

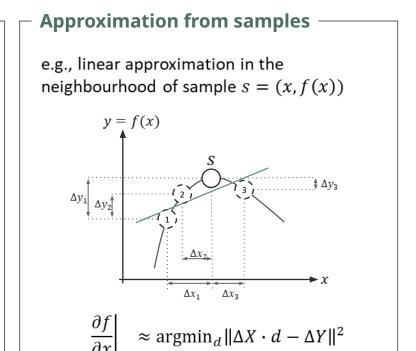


Insights from synthetic examples indicate plausible (and, possibly, beneficial!) effects of Sobolev training in settings with sparse data!

Gradient Estimation







- **Exact information**
- Not available in most cases (and, particularly, in the case of BearinX)
- Very precise information
- Costly due to the required number of additional simulations runs
- No additional samples needed
- Approximation may be imprecise

[1]

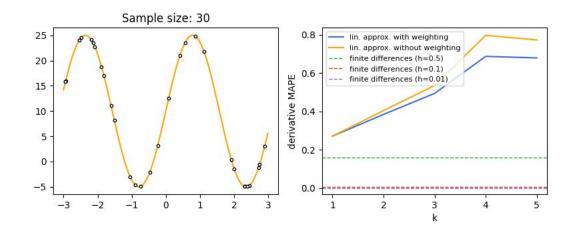
^[1] https://link.springer.com/chapter/10.1007/978-3-030-46147-8 24

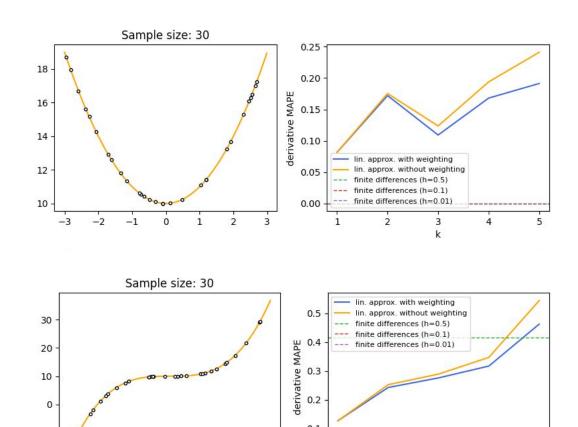
Gradient Estimation

• Linear approximation of derivatives at x_i from the k nearest neighbours n_i :

$$\left. \frac{\delta f}{\delta x} \right|_{x_i} \approx \operatorname{argmin}_d \|W(\Delta X \cdot d - \Delta Y)\|^2$$

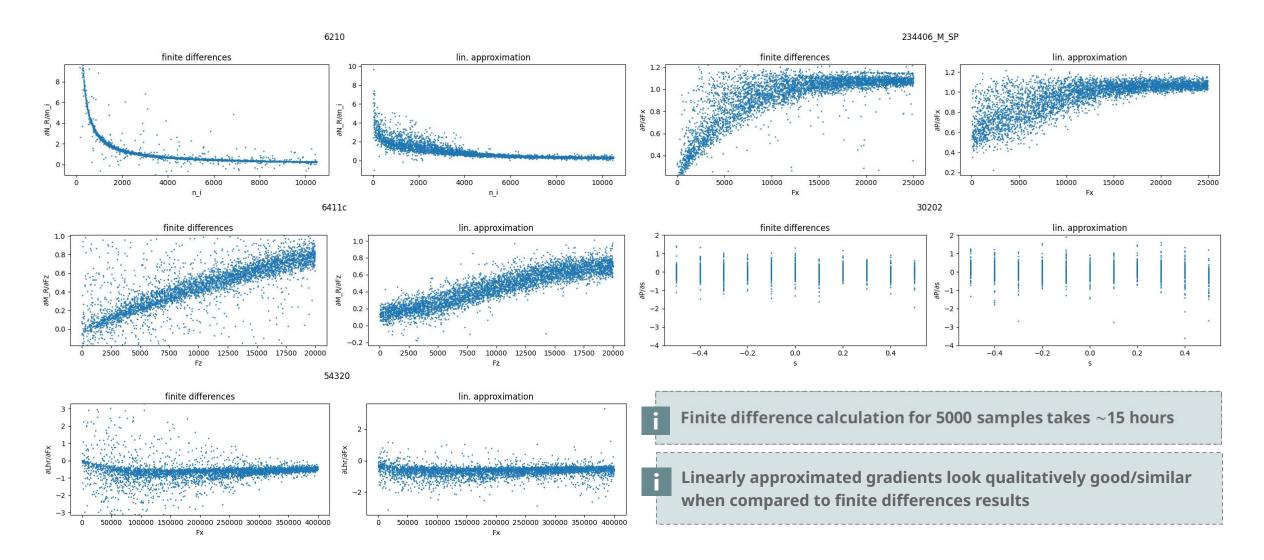
- Scaling of individual neighbours' influence by weight matrix W (influence of neighbour n_i decreases with increasing distance to x_i)
- Analytical solution of least-squares problem





-10

Gradient Estimation



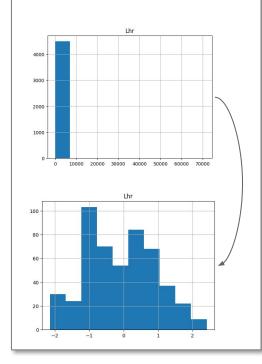
Training Pipeline

Bearing Raw Data

- Load case features:
 - F_x , F_y , F_z , M_y , M_z
 - $-n_i$ (rpm)
- Prediction targets:
 - P0
 - $-N_R$
 - $-M_R$

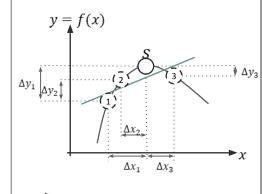
Data Preprocessing

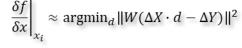
- un-skewing
- standardization



Gradient Estimation

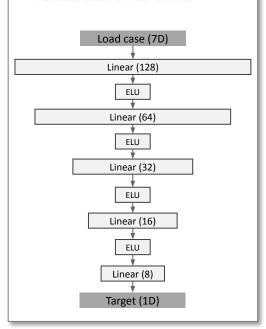
 Linear approximation from the available samples





Model Training

- Relatively small neural network architecture
- Derivative loss component fades out over time



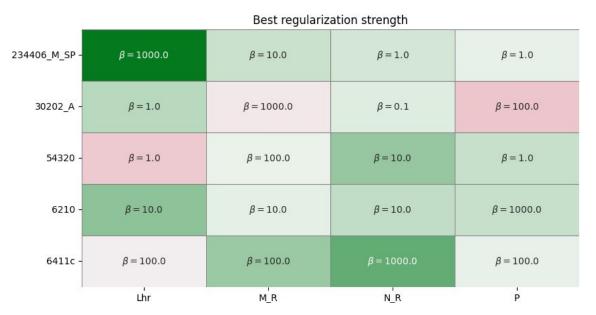
Improvements on small datasets

Training of neural networks for all bearings and targets with Sobolev regularization based on linear gradient estimates (5.000 samples)

- Training hyperparameters in line with baseline training
- Parameter study over regularization strength parameter β

$$e_{\text{ST}} = e_{\text{VT}} + \boxed{\beta} \cdot \frac{1}{N} \sum_{i=1}^{N} \left(\frac{\partial \ net_{W}(x)}{\partial x_{i}} - \frac{\partial \ f(x)}{\partial x_{i}} \right)^{2}$$

- In absolute numbers, gains due to regularization are small
- Regularization strength is yet another hyperparameter to tune



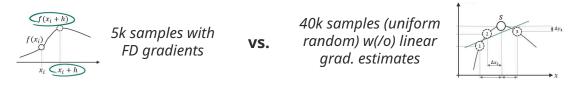
Influence of gradient regularization vs. data set size

Comparing the effects of Sobolev training with finite differences gradient estimates vs. linear gradient estimates

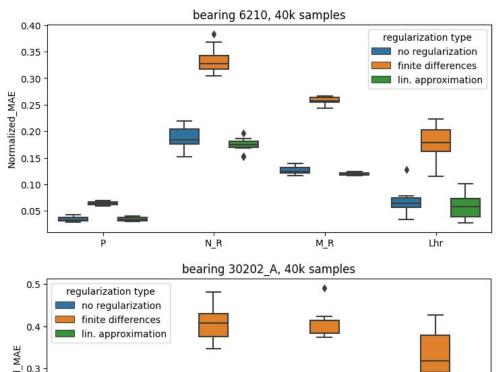
• Finite (forward) differences gradient estimate for one sample with 7 features requires 7 additional simulation runs (one perturbation per feature), i.e.:

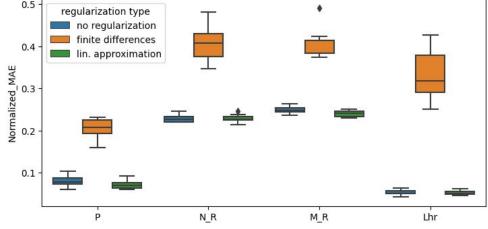
5000 samples with FD gradients \leftrightarrow 40000 simulation runs

• For a fair comparison, we trained on



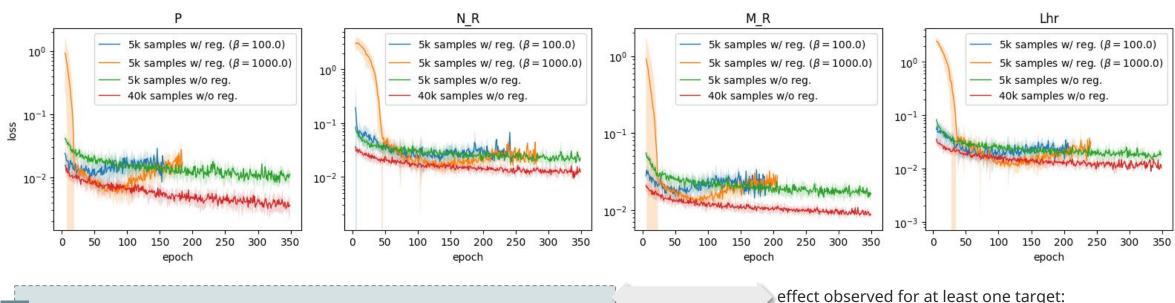
- We could not observe gains due to regularization with linear gradient estimates at larger dataset sizes
- Instead of condensing a large dataset into a finite differences gradient estimate, one can as well train without regularization on a uniform random sample of the same size

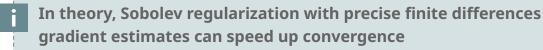




Influence on training convergence

Convergence behaviour for bearing 6210 (test loss)





In our case, this speed-up is over-compensated by the duration of additional simulation queries (cf. considerations on fair comparison)

effect observed for at least one target:

	FD gradients	lin. approx. gradients
6210	\checkmark	×
6411c		×
30202-A	\times	\times
54320		\times
234406-M-SP	\checkmark	×

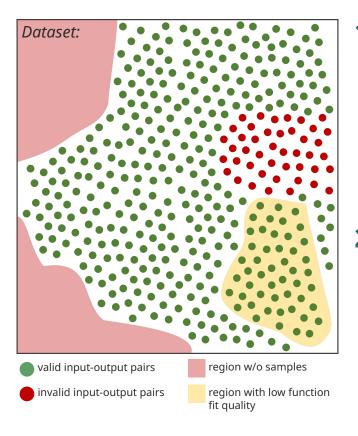
Use Case

Sobolev Training

3 Reliability Monitoring

AGENID

Safeguarding with a "Neural Network Traffic Light"



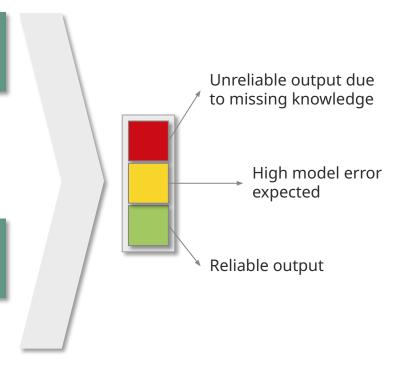
Data Safeguarding = Monitoring for model inputs outside the training data domain

Queries in input areas ...

- without available training data
- that were only sampled sparsely
- where the simulation did not converge

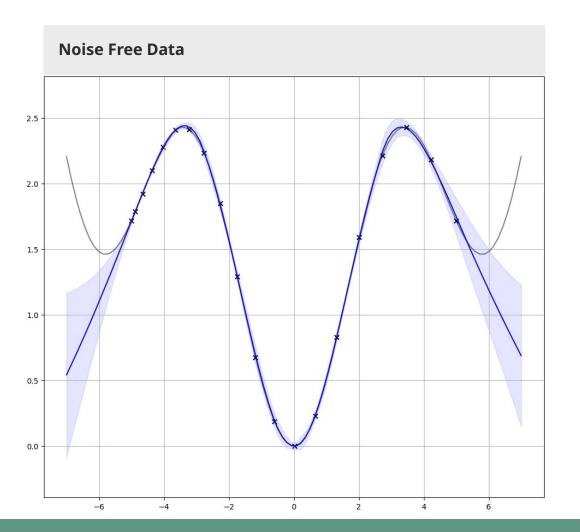
Model Safeguarding = Monitoring for model inputs in regions where the model does not fit well

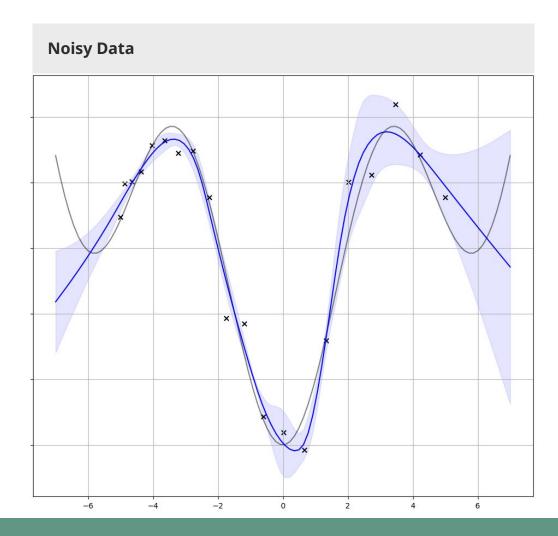
• Queries in input areas where the model is expected to over- or underfit



Our approach is built to safeguard models independently of the underlying data sampling strategy!

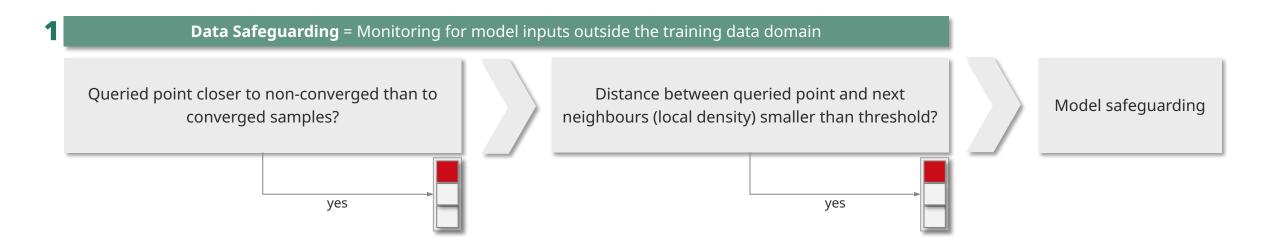
Approach - Ensemble Networks





Ensemble do not work for noise-free data

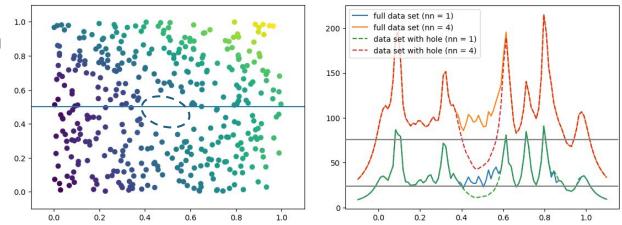
Data Safeguarding



Calculating **meaningful distances (and densities)** [1]:

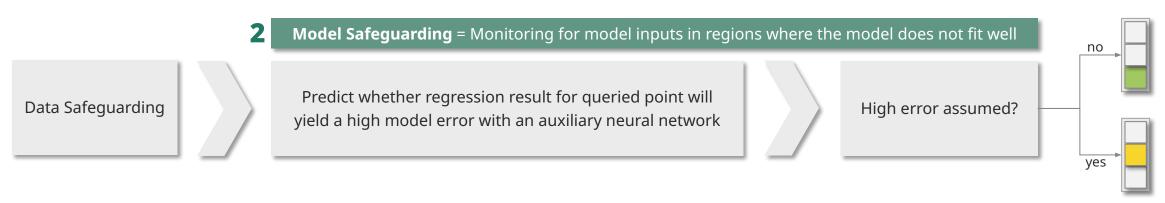
- A queried point may be far away from the training domain regarding one of the features
- This is not necessarily a problem as long as that feature does not correlate with the regression target!
- Therefore: vicinity score = correlation-weighted Euclidean distance

$$d_{ij} = \sqrt{\sum_{k=1}^{n} w_{k'} (x'_{k,i} - x'_{k,j})^2}$$
 $S_i = \sum_{j=1}^{N} 1/d_{ij}.$



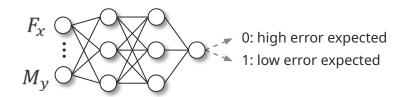
[1] Evan Askanazi and Ilya Grinberg, 2024 Mach. Learn.: Sci. Technol. 5 025030, "Analysis of machine learning prediction reliability based on sampling distance evaluation with feature decorrelation"

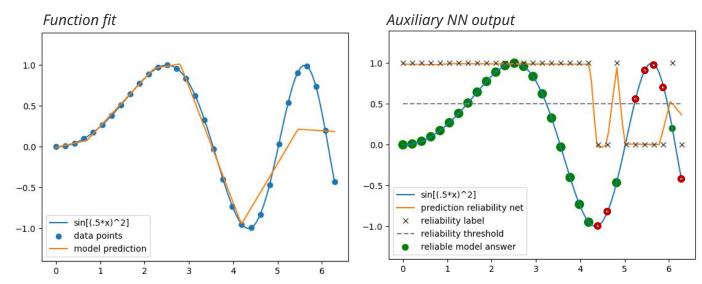
Model Safeguarding



Training an **auxiliary neural network** for error prediction:

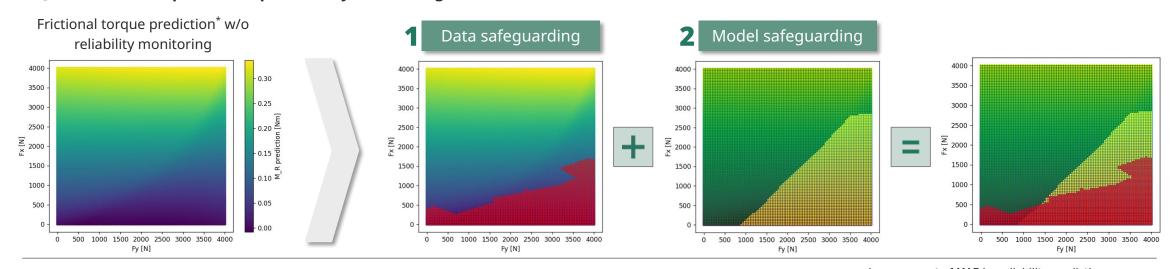
- Calculate sample-wise absolute error of regression target for the original dataset
- Binarize sample-wise errors with a user-defined error **threshold** □ new dataset with load case to 0/1 label pairs
- Train a classifier on the "new" dataset:





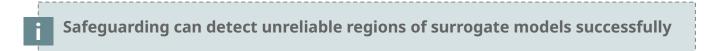
Results

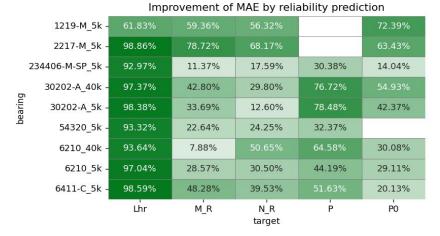
Qualitative example of 2-step reliability monitoring



Quantitative evaluation of model safeguarding for all bearings and targets (dataset size: 5.000 samples, 10-fold cross-validation)

- Error threshold: 25% quantile of error distribution on training set
- Unreliable points were excluded from regression MAE calculation (as if falling back to the Bearinx simulation in these cases)





^{*} Bearing 30202-A, operating point $n_i = 3000 \ rpm, \ F_z = 0 \ N, \ M_v = M_z = 0 \ Nm, \ s = 0 \ \mu m$