Data Assimilation for Gas Flows on Networks

<u>Jan Giesselmann</u>, Teresa Kunkel, Varun Kumar (Darmstadt), Martin Gugat (Erlangen)

State estimation on networks using observers

- Goal: Estimate the current system state in gas/H2 networks (pressure, velocity in all pipes) to improve control decisions.
- The state can only be measured at a certain number of points.
- Combine model/simulation and measurements by constructing an observer system, i.e. IBVP that uses approximate initial data and nodal measurements
- How many measurement points are needed so that we can guarantee synchronization, i.e the observer state converges to the true system state, for long times?
- ► How can we handle discrepancies between our model and the true evolution?

Overview

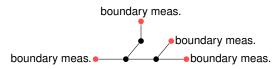
Minimal number of measurement points

Model discrepancies

Setup

We consider the case of

- full state measurements on all boundary nodes (no inner nodes); no other measurement points;
- no measurement errors:
- original system and observer system coincide;
- linear model: wave equation (without friction), i.e. linearized Euler equations. Coupling conditions correspond to conservation of mass and continuity of enthalpy or pressure in the Euler equations.
- We use the measured state as boundary condition for the observer system.



PDEs and coupling conditions

On each pipe (edge on the graph) the model reads

$$\begin{pmatrix} R_{+} \\ R_{-} \end{pmatrix}_{t} + \begin{pmatrix} c & 0 \\ 0 & -c \end{pmatrix} \begin{pmatrix} R_{+} \\ R_{-} \end{pmatrix}_{x} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

where c > 0 is the wave speed.

We consider delta-prime coupling conditions at inner nodes

$$\sum_{e \in \mathcal{E}(v)} (R_{\text{out}}^e(t,v) - R_{\text{in}}^e(t,v)) = 0, \quad R_{\text{out}}^e(t,v) + R_{\text{in}}^e(t,v) = R_{\text{out}}^f(t,v) + R_{\text{in}}^f(t,v) \ \forall e,f \in \mathcal{E}(v)$$

that can be rewritten as

$$R_{\mathrm{out}}^{e}(t,v) = -R_{\mathrm{in}}^{e}(t,v) + \frac{2}{|\mathcal{E}(v)|} \sum_{g \in \mathcal{E}(v)} R_{\mathrm{in}}^{g}(t,v), \quad t \in (0,T), v \in \mathcal{V} \setminus \mathcal{V}_{\partial}$$

where $\mathcal{E}(v)$ is the set of edges adjacent to some node v.

PDEs and coupling conditions

On each pipe (edge on the graph) the model reads

$$\begin{pmatrix} R_{+} \\ R_{-} \end{pmatrix}_{t} + \begin{pmatrix} c & 0 \\ 0 & -c \end{pmatrix} \begin{pmatrix} R_{+} \\ R_{-} \end{pmatrix}_{x} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

where c > 0 is the wave speed.

We consider delta-prime coupling conditions at inner nodes

$$\sum_{e \in \mathcal{E}(v)} (R_{\text{out}}^e(t,v) - R_{\text{in}}^e(t,v)) = 0, \quad R_{\text{out}}^e(t,v) + R_{\text{in}}^e(t,v) = R_{\text{out}}^f(t,v) + R_{\text{in}}^f(t,v) \ \forall e,f \in \mathcal{E}(v)$$

that can be rewritten as

$$R_{\mathrm{out}}^{e}(t,v) = -R_{\mathrm{in}}^{e}(t,v) + \frac{2}{|\mathcal{E}(v)|} \sum_{g \in \mathcal{E}(v)} R_{\mathrm{in}}^{g}(t,v), \quad t \in (0,T), v \in \mathcal{V} \setminus \mathcal{V}_{\partial}$$

where $\mathcal{E}(v)$ is the set of edges adjacent to some node v.

We prescribe R_{out} on each boundary node.

 $R_{\rm in}$, $R_{\rm out}$ is from the viewpoint of the nodes and corresponds to R_+ depending on geometry.

Evolution equation of difference system

We denote the difference δ_{\pm} between the solutions of the original system and the observer system. It satisfies

$$\begin{split} \partial_t \begin{pmatrix} \delta_+^e \\ \delta_-^e \end{pmatrix} + \begin{pmatrix} c & 0 \\ 0 & -c \end{pmatrix} \partial_x \begin{pmatrix} \delta_+^e \\ \delta_-^e \end{pmatrix} &= 0, & e \in \mathcal{E}, \\ \delta_\pm^e(0,x) &= y_\pm^e(x) - z_\pm^e(x), & x \in (0,\ell^e), e \in \mathcal{E}, \\ \delta_{\text{out}}^e(t,v) &= 0, & t \in (0,T), v \in \mathcal{V}_\partial, e \in \mathcal{E}(v), \\ \delta_{\text{out}}^e(t,v) &= -\delta_{\text{in}}^e(t,v) + \frac{2}{|\mathcal{E}(v)|} \sum_{g \in \mathcal{E}(v)} \delta_{\text{in}}^g(t,v), & t \in (0,T), v \in \mathcal{V} \setminus \mathcal{V}_\partial. \end{split}$$

where V_{∂} is the set of boundary nodes and y_{\pm}^{e} and z_{\pm}^{e} are the initial data of the original system and the observer system, respectively.

Inner cycles prevent synchronization

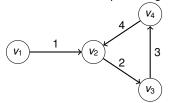
Lemma

If the graph $G = (\mathcal{V}, \mathcal{E})$ contains a cycle consisting of inner points then synchronization cannot be guaranteed, i.e. there exist initial data y_{\pm}, z_{\pm} such that

$$\lim_{t\to\infty}\|(\delta_+(t),\delta_-(t))\|_{L^2(\mathcal{E})}\neq 0.$$

Proof.

We consider an example. The general case can be handled analogously.



For any $a \in \mathbb{R}$ a stationary solution is given by

$$\delta^1_{\pm} = 0, \delta^j_{+} = a, \delta^j_{-} = -a \text{ for } j \in \{2, 3, 4\}.$$

Observability inequality

Lemma

Let $G=(\mathcal{V},\mathcal{E})$ be a tree-shaped network with N inner nodes. Let ℓ_m denote the maximal length of a pipe in G. Then there exists a constant C>0 such that for $T\geq N\frac{\ell_m}{c}$ and t>T we have

$$\|(\delta_+,\delta_-)(t,\cdot)\|_{L^2(\mathcal{E})}^2 \leq C \sum_{v \in \mathcal{V}_{\partial}} \|(\delta_+,\delta_-)(\cdot,v)\|_{L^2([t-T,t+T])}^2,$$

Sketch of proof

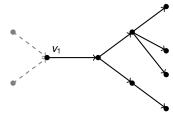
We use induction in N

For N = 1 the graph is star shaped and the result is known.

Observability inequality: induction step

For N > 1 there exists an inner node v_1 that has only one edge connected to another inner node.

Let G_1 be the sub-graph obtained by removing from G all edges connecting v_1 to boundary nodes \Longrightarrow observation inequality holds on G_1 .



G: gray and black; G_1 : in black

Note $\mathcal{V}_{\partial}(G_1) \subset \{v_1\} \cup \mathcal{V}_{\partial}(G)$. Thus, we need to bound

$$\|(\delta_{+}, \delta_{-})(\cdot, \nu_{1})\|_{L^{2}(t-T, t+T)} \leq C \sum_{v \in \mathcal{V}_{\partial}(G)} \|(\delta_{+}, \delta_{-})(\cdot, v)\|_{L^{2}(t-T-c, t+T+c)}$$

Synchronization

Theorem

Let $G = (\mathcal{V}, \mathcal{E})$ be a tree-shaped network. Then there exist constants $\mu > 0$, $C_1 > 0$ such that

$$\|(\delta_+, \delta_-)(t, \cdot)\|_{L^2(\mathcal{E})}^2 \le C_1 \exp(-\mu t) \quad \forall t > 0.$$

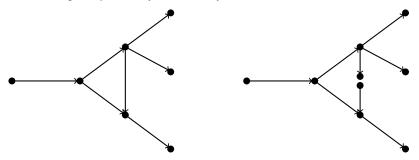
Sketch of Proof:

$$\begin{split} & \left\| (\delta_{+}, \delta_{-})(t+\tilde{t}, \cdot) \right\|_{L^{2}(\mathcal{E})}^{2} - \left\| (\delta_{+}, \delta_{-})(t-\tilde{t}, \cdot) \right\|_{L^{2}(\mathcal{E})}^{2} \\ & \leq (-c) \int_{t-\tilde{t}}^{t+\tilde{t}} \sum_{v \in \mathcal{V}_{\partial}} \sum_{e \in \mathcal{E}(v)} \left(\left| \delta_{\text{out}}^{e}(s, v) \right|^{2} + \left| \delta_{\text{in}}^{e}(s, v) \right|^{2} \right) \, ds \\ & = (-c) \sum_{s \in \mathcal{S}} \left\| (\delta_{+}, \delta_{-})(\cdot, v) \right\|_{L^{2}([t-\tilde{t}, t+\tilde{t}])}^{2}. \end{split}$$

Apply observability and modified Gronwall lemma.

What to do about general networks?

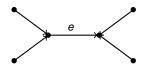
Inserting a full state measurement at a point inside a pipe (edge) into the observer is equivalent to splitting that edge and adding a boundary node for each half. If we add one measurement per cycle, we end up with a tree shaped graph \rightarrow observer state converges exponentially to the true systems state



What about finite time synchronization?

For star shaped networks without friction there is finite time synchronization.

If there is one inner pipe whose end-nodes have more than two adjacent pipes this is no longer true, due to reflection at nodes with more than two adjacent pipes:



If we start with $\delta_{\pm}^e(0,x)=1 \ \forall x\in e$ and $\delta_{\pm}(0,x)=0$ for all $x\notin e$ then for any $n\in\mathbb{N}$

$$\delta_{\pm}(n\frac{|e|}{c},x) = \frac{1}{3^n} \forall x \in e, \quad \delta_{-}(n\frac{|e|}{c},x) = \frac{2}{3^n} \ \forall x \not \in e$$

 \rightarrow (only) exponential decay.

Overview

Minimal number of measurement points

Model discrepancies

Setup

True dynamics

$$\begin{pmatrix} R_+ \\ R_- \end{pmatrix}_t + \begin{pmatrix} c & 0 \\ 0 & -c \end{pmatrix} \begin{pmatrix} R_+ \\ R_- \end{pmatrix}_x = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Observer model

$$\begin{pmatrix} S_+ \\ S_- \end{pmatrix}_t + \begin{pmatrix} c & 0 \\ 0 & -c \end{pmatrix} \begin{pmatrix} S_+ \\ S_- \end{pmatrix}_x = \begin{pmatrix} \epsilon_+ \\ \epsilon_- \end{pmatrix}$$

with ϵ_{\pm} given functions that account for the difference between the models.

We can again study the evolution of the differences δ_{\pm} = R_{\pm} - S_{\pm} . If we have state measurements at all nodes we get

Theorem

There exist T, C, c > 0 such that for all t > T

$$\delta_{+}(t)^{2} + \delta_{-}(t)^{2} \leq C \left(1 + \int_{0}^{t} (\varepsilon_{+}(s)^{2} + \varepsilon_{-}(s)^{2}) e^{cs} ds\right) e^{-ct}$$

Summary

- Exponential synchronization of boundary observers for linear wave equations with full state measurements for networks without cycles.
- Exponential synchronization is optimal since finite time synchronization does not hold in general.
- In general, there is no synchronization for networks with cycles \longrightarrow one needs to add one measurement per cycle to ensure synchronization.
- Analogous results hold in the case with linear friction. Technical challenge: Riemann invariants are no longer constant along characteristics and interact constantly.
- Conjecture: analogous results hold for non-linear friction as long as the friction law is Lipschitz, and for non-linear wave equations – as long as solutions are subsonic.
- We plan to analyse minimal numbers of measurements with nonlinear models and model discrepancies.

Summary

- Exponential synchronization of boundary observers for linear wave equations with full state measurements for networks without cycles.
- Exponential synchronization is optimal since finite time synchronization does not hold in general.
- In general, there is no synchronization for networks with cycles one needs to add one measurement per cycle to ensure synchronization.
- Analogous results hold in the case with linear friction. Technical challenge: Riemann invariants are no longer constant along characteristics and interact constantly.
- Conjecture: analogous results hold for non-linear friction as long as the friction law is Lipschitz, and for non-linear wave equations – as long as solutions are subsonic.
- We plan to analyse minimal numbers of measurements with nonlinear models and model discrepancies.

Thank you for your attention!

