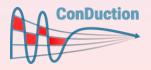
Be greedy and learn: efficient and certified algorithms for parametrized optimal control problems

Martin Lazar University of Dubrovnik

The Mathematics of Scientific Machine Learning and Digital Twins Erice. November 2025

Joint work with:

Hendrik Kleikamp (Graz), Cesare Molinari (Genova)



Parameter dependent problems

Linear systems (of finite dimension N) associated to a parameter $\nu\in\mathfrak{K}$

$$A_{\nu}x = b_{\nu},$$

- $A_{\nu}: X \to Y$
- \bullet X, Y Banach spaces.

We suppose the equations are well posed for each ν . x_{ν} – corresponding solution.

The goal

To tackle the problem in an efficient and robust manner:

- model reduction (greedy algorithms)
- machine learning (DNN, etc)

The greedy method¹

X – a Banach space

 $K \subset X$ – a compact subset.

The method approximates K by a series of finite dimensional linear spaces V_k (a linear method).

Goal of the greedy algorithm

Find a reduced space $V_k \subset X$ of (small) dimension k such that

$$\operatorname{dist}(V_k, K) \leq \varepsilon,$$

where $\varepsilon > 0$ is the approximation tolerance.

Two phases:

- selection of reduced basis vectors x_i (offline)
- approximation of an arbitrary $x \in K$ by $\sum \alpha_i x_i \in V_k$ (online).

¹A. Cohen, R. DeVore, A. T. Patera, etc.

The greedy idea

The algorithm - offline part

Fix finite training set $K_{tr} \subset K$.

The first step

Choose $x_1 \in K_{tr}$ such that

$$||x_1||_X = \max_{x \in K_{tr}} ||x||_X.$$

The general step

Having found $x_1...x_n$, denote $V_n = \operatorname{span}\{x_1, ..., x_n\}$.

Choose the next element

$$x_{n+1} := \arg \max_{x \in K_{tr}} \operatorname{dist}(x, V_n).$$

The algorithm stops

when $\sigma_n(K) := \max_{x \in K_{tr}} \operatorname{dist}(x, V_n)$ becomes less than the given tolerance ε .

Important:

In each iteration elements $x \in K_{tr}$ are "projected" to V_n (e.g. by Galerkin)

$$x pprox x^* = \sum_{i=1}^{n} \alpha_i(x) x_i.$$

 $lpha_i$ - projection coefficients.

Efficiency

In order to estimate the efficiency of the greedy algorithm we compare its approximation rates $\sigma_n(K)$ with the best possible one.

The Kolmogorov n width, $d_n(K)$

- measures how well K can be approximated by a subspace in X of a fixed dimension n.

$$d_n(K) := \inf_{\dim Y = n} \sup_{x \in K} \inf_{y \in Y} ||x - y||_X.$$

Thus $d_n(K)$ represents optimal approximation performance that can be obtained by a *n*-dimensional linear space.

Theorem¹

The greedy approximation rates have same decay as the Kolmogorov widths.

For any $\alpha > 0, C_0 > 0$

$$d_n(K) \le C_0 n^{-\alpha} \implies \sigma_n(K) \le C_1 n^{-\alpha}, \quad k \in \mathbf{N},$$

where $C_1 := C_1(\alpha, C_0)$.

¹A. COHEN, R. DEVORE, Approximation of high-dimensional parametric PDEs, Acta Numerica, 24 (2015) 1-159.

Greedy approach – implementation issues

Let us go back to the problem of parameter dependent linear equations

$$A_{\nu}x = b_{\nu},\tag{1}$$

- $A_{\nu}: X \to Y$
- \bullet X, Y Banach spaces.

The solution manifold K

$$K := \{x_{\nu} : \nu \in \mathcal{K}, \ x_{\nu} \text{ solves (1)}\} \subset X$$

Let us approximate K by the greedy procedure.

Suppose

- we have chosen the training set $K_{tr} \subseteq K$ determined by the finite set of parameters $\{\nu_1, \ldots, \nu_N\}$.
- Suppose we have chosen ν_1 and calculate x_1 .

How should we estimate

$$\operatorname{dist}_{x_{\nu} \in K_{tr}}(x_{\nu}, [x_1])$$

without knowing the solution x_{ν} ?

Greedy approach – implementation issues

Take the residual of the linear system as a distance estimator:

$$r_{\nu}(x) := ||A_{\nu}x - b_{\nu}||_{Y}, \quad x \in X$$

Theorem (Distance estimator for an unknown solution)

If both A_{ν} and A_{ν}^{-1} are uniformly bounded

$$c \|x_{\nu} - x\|_{X} \le r_{\nu}(x) \le C \|x_{\nu} - x\|_{X},$$

with

- $C = \sup_{\nu} \|A_{\nu}\|$
- $c^{-1} = \sup_{\nu} ||A_{\nu}^{-1}||$
- Instead of maximising the (unknown) distances to the approximation subspace, we maximise the residuals.
- The procedure fulfils the requirements of the greedy theory and stops after the most n (system dimension) steps.

Online computations of the greedy reduced order model (G ROM)

For a new parameter u we approximate the (unknown) solution to $A_{\nu}x=b_{\nu}$ by:

• $\tilde{x}_{\nu}^k = \sum_{i=1}^k \alpha_i^{\nu} x_i \in V_k$ such that

$$\sum_{i=1}^{k} \alpha_i^{\nu} \underbrace{A_{\nu} x_i}_{z_i^{\nu}} \approx b_{\nu}.$$

This requires

- computing $z_i^{\nu} = A_{\nu} x_i$ for $i = 1, \dots, k$
- projecting $b_{
 u}$ onto $\bar{Z}_{
 u} = [z_1^{
 u}, \cdots, z_k^{
 u}]$
- Costly part in the online phase (for large systems) : Computation of $A_{\nu}x_i$ for $i=1,\ldots,k$.
- ullet Instead: Learn the parameter to coefficients map π

$$\nu \mapsto \pi_k(\nu) \coloneqq (\alpha_i^{\nu})_{i=1}^k$$

by machine learning surrogate $\pi_k^* \colon \mathcal{K} \to \mathbb{R}^k$.

N.B.

- ullet The coefficients $(lpha_i^
 u)_{i=1}^k$ have already been calculated for all the training parameters in the offline phase.
- Training data is automatically generated during the greedy algorithm.
- Machine learning surrogate is trained during the offline phase.

Machine learning approaches

Various machine learning methods can be applied here, we considered:

• Deep neural networks (DNN), see for instance [e.g. Petersen, Voigtlaender'18].

• Kernel methods (VKOGA), see for instance [e.g.Santin, Haasdonk'21].

$$\pi_k^*(\nu) = \sum_{i \in \Xi} \alpha_i k(\nu, x_i)$$

• Gaussian process regression (GPR), see for instance [Rasmussen, Williams'06].

$$\pi_k^*(\nu) = \mathbb{E}_y[P(y|\nu, X, Y)]$$

Parametrized optimal control problems

Control systems (of finite dimension n) associated to a parameter $u \in \mathcal{K}$

$$\dot{x}_{\nu}(t) = \mathcal{A}_{\nu} x_{\nu}(t) + \mathcal{B}_{\nu} u_{\nu}(t) \text{ for } t \in [0, T], \quad x_{\nu}(0) = x_{\nu}^{0}.$$

accompanied by optimization problems

$$\min_{u} \mathcal{J}_{\nu}(u) := \frac{1}{2} \left[\underbrace{\langle M \big(x_{\nu}(T) - x_{\nu}^{T} \big), x_{\nu}(T) - x_{\nu}^{T} \rangle}_{\text{deviation from the target state } x_{\nu}^{T}} + \underbrace{\int_{0}^{T} \langle Ru(t), u(t) \rangle dt}_{\text{energy of the control}} \right]$$

with $M \geq 0, R \geq \alpha I$ for some $\alpha > 0$

The solution is determined by the optimal adjoint vector $\varphi_{\nu}(T)$ satisfying

Linear system

$$\underbrace{\left(I + M\Lambda_{\nu}^{R}\right)}_{A_{\nu}} \underbrace{\varphi_{\nu}(T)}_{x_{\nu}} = \underbrace{x_{\nu}^{T} - e^{A_{\nu}T}x_{\nu}^{0}}_{b_{\nu}},$$

where $\Lambda_{\nu}^{R} \in \mathcal{L}(X,X)$ is the weighted controllability Gramian.

Approximating the solution manifold by linear subspaces

- Manifold $\mathcal{M} := \{ \varphi_{\nu}(T) : \nu \in \mathcal{K} \} \subset X = \mathbf{R}^N$
- Approximation tolerance $\varepsilon > 0$

Goal of the greedy algorithm

Find a reduced space $V_k \subset X$ of (small) dimension k such that

$$\operatorname{dist}(V_k, \mathfrak{M}) \leq \varepsilon.$$

- Apply a greedy algorithm to construct a reduced basis for the optimal final time adjoint states (by means of an efficient error estimator for the reduced space).
- Later: Accelerate online phase using machine learning with error certification.

²H. KLEIKAMP, M.L, C. MOLINARI, Be greedy and learn: efficient and certified algorithms for parametrized optimal control problems, ESAIM: M2AN, (2025)

Error estimates for machine learning approximation

We use ML to approximate the greedy approximation of the solution.

Error estimates

• A priori bound:

$$\|\tilde{\varphi}_{\nu}^{k} - \varphi_{\nu}(T)\| \le C_{\Lambda} \underbrace{\varepsilon}_{\substack{\text{greedy} \text{tolerance}}} + \underbrace{\|\pi_{k}(\nu) - \pi_{k}^{*}(\nu)\|}_{\substack{\text{approximation error of machine learning}}}.$$

with
$$C_{\Lambda} = \sup_{\nu} \|I + \Lambda_{\nu}^{R}\|_{\mathcal{L}(X,X)}$$
.

A posteriori bound:

$$\|\tilde{\varphi}_{\nu}^{k} - \varphi_{\nu}(T)\| \leq r_{\nu}(\tilde{\varphi}_{\nu}^{k}) \leq \|I + \Lambda_{\nu}\|\|\tilde{\varphi}_{\nu}^{k} - \varphi_{\nu}(T)\|.$$

Numerical example: Parametrized heat equation

• Problem definition:

$$\begin{split} \partial_t v_{\nu}(t,y) - \frac{\nu_1 \Delta v_{\nu}(t,y) &= 0 & \text{for } t \in [0,T], y \in \Omega, \\ v_{\nu}(t,0) &= u_{\nu,1}(t) & \text{for } t \in [0,T], \\ v_{\nu}(t,1) &= u_{\nu,2}(t) & \text{for } t \in [0,T], \\ v_{\nu}(0,y) &= v_{\nu}^0(y) &= \sin(\pi y) & \text{for } y \in \Omega. \end{split}$$

- Semi-discretisation, with n = 100.
- Weighting matrices:

$$M = I \in \mathbb{R}^{n \times n}$$
 and $R = \begin{bmatrix} 0.125 & 0 \\ 0 & 0.25 \end{bmatrix}$

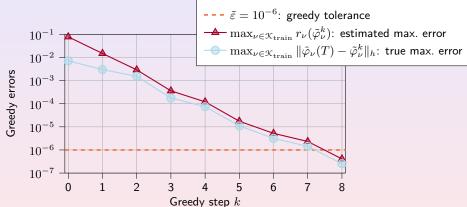
• Target state:

$$v_{\nu}^{T}(y) = \frac{\mathbf{v_2}y}{\mathbf{v_2}}$$

- $\Omega = [0, 1], T = 0.1,$
- Parameter set $\mathcal{K} = [1, 2] \times [0.5, 1.5]$

Numerical example: Parametrized heat equation

Results of running the greedy algorithm with 64 uniformly distributed training parameters:



Numerical example: Results

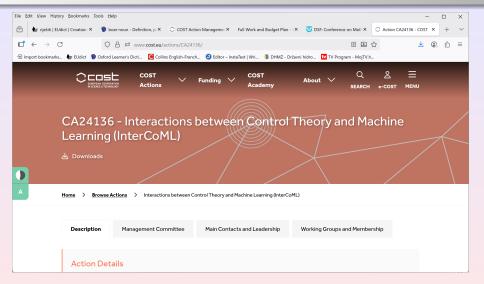
Results on a set of 100 randomly drawn test parameters:

	Avg	Averaged	Avg.	Avg.
Method	adjoint error	control error	runtime (s)	speedup
Exact solution	_	_	6.2760	_
G ROM	$5.3 \cdot 10^{-8}$	$5.4 \cdot 10^{-9}$	2.6526	2.37
DNN ROM	$5.8 \cdot 10^{-6}$	$2.0 \cdot 10^{-6}$	0.1623	40.33
VKOGA ROM	$1.8 \cdot 10^{-5}$	$6.9 \cdot 10^{-6}$	0.1580	41.03
GPR ROM	$2.2\cdot10^{-6}$	$7.6\cdot10^{-7}$	0.1572	41.40

Conclusion:

- the novel approach that combines the standard ROM with ML tools
- significant speed up of the online phase
- error bounds available.

Announcement - new COST Action



Thanks for your attention!

16 / 16