Learning Adaptive Step Sizes in Iterative PDE Solvers: Harmonic Map Heat Flow

Tatjana Schreiber, University of Freiburg November 22, 2025

Workshop: The Mathematics of Scientific Machine Learning and Digital Twins

Overview

Goal: Replace expensive line search with a learned adaptive step size that preserves stability and minimizes energy faster.

- Step-size selection is a key hyperparameter in iterative PDE solvers
- "Safe" steps guarantee stability but can be very slow
- We learn an adaptive step size au_k for the harmonic map heat flow
 - ⇒ Nonlinear Problem with non convex constraint
- Classical methods ⇒ ground truth & features

Model Problem

Harmonic maps

Variational problem

Find $u: \Omega \to \mathbb{S}^2$ such that

$$E(u) = \frac{1}{2} \|\nabla u\|_{L^2}^2 \quad \text{is minimized},$$

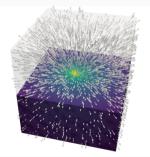
subject to

$$|u(x)| = 1$$
 for $x \in \Omega$, $u = g$ on $\partial \Omega$.

Applications

Physical models: Micromagnetics, Liquid crystals, Robotic, . . .

Geometry and data: Minimal surfaces, ...



Examples of a harmonic map into \mathbb{S}^2 .

Discrete Harmonic Map Heat Flow

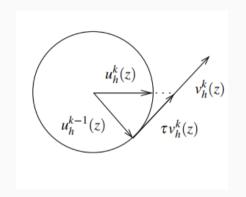
Iterative Algorithm

1. Compute tangent gradient v_h^k :

$$(\nabla v_h^k, \nabla w_h) = -(\nabla u_h^{k-1}, \nabla w_h) \quad \forall w_h \perp u_h^{k-1}.$$

2. Update & Project:

$$u_h^k(z) = \frac{u_h^{k-1}(z) + \tau \, v_h^k(z)}{|u_h^{k-1}(z) + \tau \, v_h^k(z)|}.$$



Reference: F. Alouges, "A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case," SIAM J. Numer. Anal. 34(5), 1708–1726 (1997).

Harmonic map with singularity

- Domain $\Omega=(-\frac{1}{2},\frac{1}{2})^2\subset\mathbb{R}^2$
- Boundary data

$$g(x) = \frac{x}{|x|}, \qquad x \in \partial\Omega,$$

has topological degree 1.

Consequence (Hopf)

 H^1 -flow must converge to solution with singularity near the origin.

Why adaptive step sizes?

- Iterative schemes must balance stability vs. speed
- For harmonic map heat flow: if $\tau \leq 2$, the energy decreases in every step

Example: fixed problem, varying step size

au	0.5	0.75	1.0	1.25	1.5	1.75	2.0
Iterations	411	251	186	149	124	107	797

Classical Step-Size Strategies

Barzilai-Borwein (BB) step sizes

Define $s_{k-1} = u_h^k - u_h^{k-1}$ and $y_{k-1} = v_h^k - v_h^{k-1}$.

Two BB choices for the time step τ_k :

$$\alpha_k^{(1)} = \frac{\langle s_{k-1}, s_{k-1} \rangle}{\langle s_{k-1}, y_{k-1} \rangle}, \qquad \alpha_k^{(2)} = \frac{\langle s_{k-1}, y_{k-1} \rangle}{\langle y_{k-1}, y_{k-1} \rangle}.$$

- Encodes local curvature (approximation of inverse Hessian)
- Very effective in practice
- No guaranteed energy decrease in each step

Golden-Section search

For fixed u and descent direction v, define

$$\Phi(\tau) := E\left(\frac{u + \tau v}{|u + \tau v|}\right).$$

Golden-Section search efficiently finds

$$\arg\min_{\tau\in[a,b]}\Phi(\tau)$$

under a mild near-unimodality assumption.

- Robust and derivative-free \Rightarrow high-quality "oracle" step sizes $au_{
 m gold}$
- Main drawback: several energy evaluations per iteration

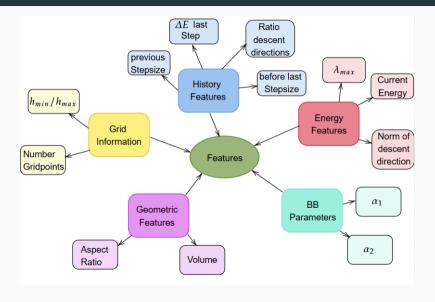
Learning the Step Size

Supervised learning of τ_k

Goal: learn a map $f_{\theta}: S_k \mapsto \hat{\tau}_k$ from a state representation S_k

- Training data: $(S_k, \tau_k^{\text{gold}})$ pairs from Golden-Section line searches
- State vector: encodes information about the current iterative and history
- Goal: Choose τ by a single forward pass
- \blacksquare Safeguard: If the energy increases, repeat the step with $\tau_{\rm safe}$

State representation



Energy regret bound

Define

$$\Phi(\tau) := E\left(\frac{u+\tau v}{|u+\tau v|}\right).$$

Regret bound

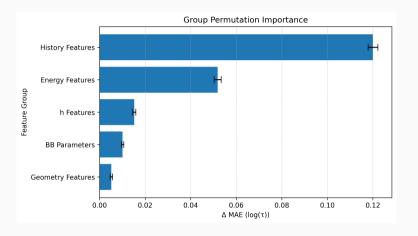
If $\Phi''(\tau) \leq M_{\nu}$ on $[0, \tau_{\mathsf{safe}}]$, then

$$0 \leq R := \Phi(\tau_{\theta}) - \Phi(\tau_{\mathsf{gold}}) \leq \frac{M_{\mathsf{v}}}{2} (\tau_{\theta} - \tau_{\mathsf{gold}})^2.$$

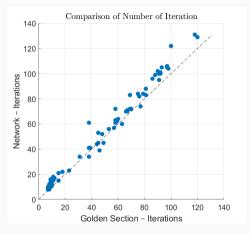
- In expectation, $\mathbb{E}[R] \leq \frac{M}{2} \, \mathrm{MSE}$
- Over K steps: energy gap is quadratically controlled by the prediction error

Results

What does the network learn?



Results



Cost Comparison: Golden Section vs Neural Network 1010 Golden Section Neural Network 10^{9} 10^{8} 10^{7} Cost (FLOPs) 10⁶ 105 104 10³ 100 101 10² 103 104 105 106 107 Number of grid points N

Figure 1: Direct comparison of iterations

Figure 2: Cost of step-size selection (log-log scale)

Summary

- Numerical analysis meets Scientific Machine Learning:
 Learning a step-size rule as a surrogate for classical line search
- Stable by design:
 Projection and safeguarding ensure monotone energy decrease
- Theoretical insight:
 A regret bound links step-size prediction error to energy gap
- Practical impact:
 Replaces a costly line search by a constant-time forward pass, reducing the per-step cost by 3–4 orders of magnitude for typical 3D meshes

Thank you for your attention!