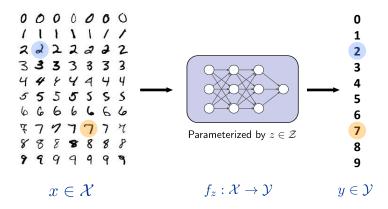
A Potential Game Framework in Federated Learning

Ziqi Wang Joint work with K. Liu and E. Zuazua

Chair for Dynamics, Control, Machine Learning, and Numerics Alexander von Humboldt-Professorship Friedrich-Alexander-Universität Erlangen-Nürnberg

The Mathematics of Scientific Machine Learning and Digital Twins Erice, 20.11.2025

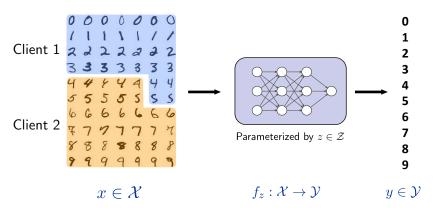
Centralized learning



ightharpoonup Learning/training seeks to optimize the parameters z by

$$\min_{z \in \mathcal{Z}} \ell(z, \mathcal{D}) := \frac{1}{|\mathcal{D}|} \sum_{i \in \mathcal{D}} \operatorname{dist} (f_z(x_i), y_i),$$
$$z^+ = z - \eta \nabla_z \ell(z, \mathcal{D}).$$

Centralized learning



Constraints: data are distributed and private.

Problem formulation of federated learning

Federated learning (FL) [McMahan et al. 2017]

FL is a machine learning setting where multiple clients collaborate to solve a machine learning problem under the coordination of a central server, without sharing their private data.

ightharpoonup FL training with m clients:

$$\min_{z \in \mathbb{R}^n} \sum_{i=1}^m \rho_i \ell_i(z, \mathcal{D}_i), \tag{P1}$$

- \triangleright ℓ_i is client i's loss function,
- \triangleright \mathcal{D}_i is client *i*'s private dataset,
- $ightharpoonup
 ho_i$ is the weight assigned by the central server, e.g., $ho_i = |\mathcal{D}_i| / |\mathcal{D}|$.

Problem formulation of federated learning

Federated learning (FL) [McMahan et al. 2017]

FL is a machine learning setting where multiple clients collaborate to solve a machine learning problem under the coordination of a central server, without sharing their private data.

► FL training with *m* clients:

$$\min_{z \in \mathbb{R}^n} \sum_{i=1}^m \rho_i \ell_i(z, \frac{\mathcal{D}_i}{}), \tag{P1}$$

- \triangleright ℓ_i is client *i*'s loss function,
- $\triangleright \mathcal{D}_i$ is client i's private dataset,
- $ightharpoonup
 ho_i$ is the weight assigned by the central server, e.g., $ho_i = |\mathcal{D}_i| / |\mathcal{D}|$.

Problem formulation of federated learning

ightharpoonup FL training with m clients:

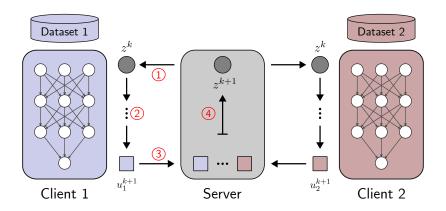
$$\min_{z \in \mathbb{R}^n} \sum_{i=1}^m \rho_i \ell_i(z, \mathcal{D}_i), \tag{P1}$$

By introducing a consensus constraint:

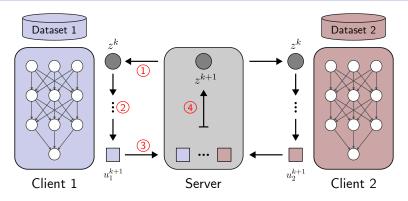
$$\min_{u_i, z \in \mathbb{R}^n} \sum_{i=1}^m \rho_i \ell_i(u_i, \mathcal{D}_i), \text{ s.t. } u_i = \mathbf{z}, \forall i \in [m],$$
 (P2)

- \triangleright u_i is the local model parameter held by client i,
- ightharpoonup z is the global model parameter held by the server.

Training in FL: Exchange model parameters instead of data



Clients' local training

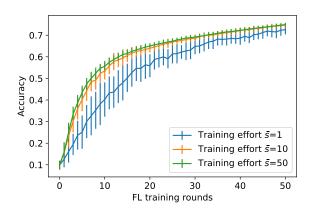


In Step ②: each client performs local training (e.g., gradient descent):

$$u_i^{t+1} = \text{LocalTraining}_i(z^t, s_i^t),$$

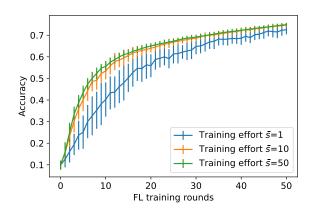
where s_i^t is client i's training effort (e.g., # gradient descent steps).

Motivation: Clients' local training requires incentives



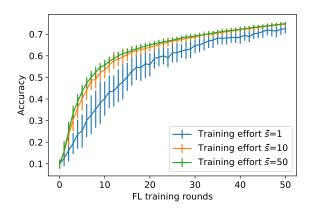
- **Finding:** Greater average effort \bar{s} leads to better performance.
- Challenge: Increasing training effort leads to higher costs for clients.
- **Solution:** Incentivize clients by rewarding them based on their efforts.

Motivation: Clients' local training requires incentives



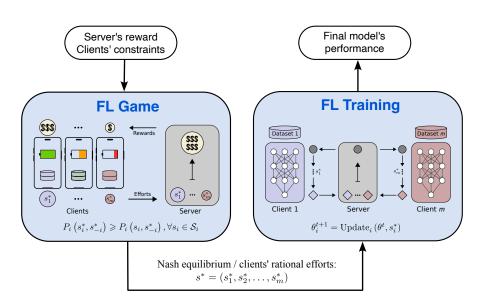
- **Finding:** Greater average effort \bar{s} leads to better performance.
- ▶ **Challenge:** Increasing training effort leads to higher costs for clients.
- Solution: Incentivize clients by rewarding them based on their efforts

Motivation: Clients' local training requires incentives



- **Finding:** Greater average effort \bar{s} leads to better performance.
- ▶ **Challenge:** Increasing training effort leads to higher costs for clients.
- **Solution:** Incentivize clients by rewarding them based on their efforts.

Illustration of the FL game and training



Game theory preliminaries

Definition (m-player game Γ)

A game Γ consists of:

- ▶ A finite set of players $[m] := \{1, ..., m\}$.
- ▶ A strategy set S_i for each player $i \in [m]$.
- ▶ The players' payoff functions $P_i : S \to \mathbb{R}$, with $S = \prod_{i \in [m]} S_i$.

Definition (Nash equilibrium (NE))

In game Γ , a point $s^* \in \mathcal{S}$ is an NE if the following inequality holds:

$$P_i\left(s_i^*, s_{-i}^*\right) \ge P_i\left(s_i, s_{-i}^*\right), \ \forall s_i \in \mathcal{S}_i, \ \forall i \in [m].$$

FL game Γ_{FL}

Definition (FL game Γ_{FL})

The FL game Γ_{FL} contains:

- ▶ A set of players (clients) $[m] := \{1, ..., m\};$
- ▶ Each client's strategy set $S_i \subseteq \mathbb{R}_+^T$;
- ▶ Each client's payoff function $P_i: \mathcal{S} \to \mathbb{R}$, with $\mathcal{S} = \prod_{i \in [m]} \mathcal{S}_i$:

$$P_i(s_i, s_{-i}) = \sum_{t=1}^{T} r_{\lambda}(s_i^t, s_{-i}^t) - c_i(s_i^t).$$

Key question: How do the NEs and the FL training performance vary as the reward parameter λ changes?

FL game Γ_{FL}

Definition (FL game Γ_{FL})

The FL game Γ_{FL} contains:

- ▶ A set of players (clients) $[m] := \{1, ..., m\}$;
- ▶ Each client's strategy set $S_i \subseteq \mathbb{R}_+^T$;
- ▶ Each client's payoff function $P_i: \mathcal{S} \to \mathbb{R}$, with $\mathcal{S} = \prod_{i \in [m]} \mathcal{S}_i$:

$$P_i(s_i, s_{-i}) = \sum_{t=1}^{T} r_{\lambda}(s_i^t, s_{-i}^t) - c_i(s_i^t).$$

Key question: How do the NEs and the FL training performance vary as the reward parameter λ changes?

Game formulation: Clients' strategy sets

Total-budget strategy set

$$S_i = \left\{ s_i \in \mathbb{R}_+^T \middle| b_i \le \sum_{t \in [T]} s_i^t \le B_i \right\},\,$$

where b_i and B_i denote the minimum and maximum total efforts.

Stationary strategy set

$$S_i = \left\{ s_i \in \mathbb{R}_+^T \middle| q_i \le s_i^t = s_i^\tau \le Q_i, \ \forall \ t, \tau \in [T] \right\},\,$$

where q_i and Q_i represent the minimum and maximum per-round efforts.

- ▶ It is reasonable to assume that each client's training effort is bounded.
- For instance, each client's device has limited battery life.

Game formulation: Clients' strategy sets

Total-budget strategy set

$$S_i = \left\{ s_i \in \mathbb{R}_+^T \,\middle|\, b_i \le \sum_{t \in [T]} s_i^t \le B_i \right\},\,$$

where b_i and B_i denote the minimum and maximum total efforts.

Stationary strategy set

$$S_i = \left\{ s_i \in \mathbb{R}_+^T \middle| q_i \le s_i^t = s_i^\tau \le Q_i, \ \forall \ t, \tau \in [T] \right\},\,$$

where q_i and Q_i represent the minimum and maximum per-round efforts.

- ▶ It is reasonable to assume that each client's training effort is bounded.
- ► For instance, each client's device has limited battery life.

Game formulation: Reward in clients' payoff functions

▶ The payoff function for each client *i* is the reward minus the cost:

$$P_i(s_i, s_{-i}) = \sum_{t=1}^{T} r_{\lambda}(s_i^t, s_{-i}^t) - c_i(s_i^t).$$

► The reward function is defined as

$$r_{\lambda}(s_i^t, s_{-i}^t) = p_{\lambda}^t s_i^t, \text{ where } p_{\lambda}^t = \lambda \sum_{j=1}^m \rho_j s_j^t.$$

- ightharpoonup The unit price p_{λ}^{t} depends on the total weighted effort of all clients.
- ▶ The reward factor $\lambda > 0$ is a parameter controlled by the server.
- ▶ **Intuition:** The reward mechanism encourages all clients to contribute more effort collectively.

Game formulation: Reward in clients' payoff functions

▶ The payoff function for each client *i* is the reward minus the cost:

$$P_i(s_i, s_{-i}) = \sum_{t=1}^{T} r_{\lambda}(s_i^t, s_{-i}^t) - c_i(s_i^t).$$

► The reward function is defined as

$$r_{\lambda}(s_i^t, s_{-i}^t) = p_{\lambda}^t s_i^t, \text{ where } p_{\lambda}^t = \lambda \sum_{j=1}^m \rho_j s_j^t.$$

- lacktriangle The unit price p_{λ}^t depends on the total weighted effort of all clients.
- ▶ The reward factor $\lambda > 0$ is a parameter controlled by the server.
- ▶ **Intuition:** The reward mechanism encourages all clients to contribute more effort collectively.

Game formulation: Reward in clients' payoff functions

▶ The payoff function for each client *i* is the reward minus the cost:

$$P_i(s_i, s_{-i}) = \sum_{t=1}^{T} r_{\lambda}(s_i^t, s_{-i}^t) - c_i(s_i^t).$$

► The reward function is defined as

$$r_{\lambda}(s_i^t, s_{-i}^t) = p_{\lambda}^t s_i^t, \text{ where } p_{\lambda}^t = \frac{\lambda}{\lambda} \sum_{i=1}^m \rho_j s_j^t.$$

- lacktriangle The unit price p_{λ}^t depends on the total weighted effort of all clients.
- ► The reward factor $\lambda > 0$ is a parameter controlled by the server.
- ▶ **Intuition:** The reward mechanism encourages all clients to contribute more effort collectively.

Game formulation: Cost in clients' payoff functions

▶ The payoff function for each client *i* is the reward minus the cost:

$$P_i(s_i, s_{-i}) = \sum_{t=1}^{T} r_{\lambda}(s_i^t, s_{-i}^t) - c_i(s_i^t).$$

► The cost function can be specified as

$$c_i(s_i^t) = \alpha_i s_i^t$$
 or $c_i(s_i^t) = \alpha_i (s_i^t)^2$,

where $\alpha_i > 0$ is the marginal cost rate.

▶ **Intuition:** Clients are willing to contribute effort when their costs are adequately compensated by the received rewards.

Game formulation: Cost in clients' payoff functions

▶ The payoff function for each client *i* is the reward minus the cost:

$$P_i(s_i, s_{-i}) = \sum_{t=1}^{T} r_{\lambda}(s_i^t, s_{-i}^t) - c_i(s_i^t).$$

► The cost function can be specified as

$$c_i(s_i^t) = \alpha_i s_i^t$$
 or $c_i(s_i^t) = \alpha_i (s_i^t)^2$,

where $\alpha_i > 0$ is the marginal cost rate.

▶ **Intuition:** Clients are willing to contribute effort when their costs are adequately compensated by the received rewards.

Game formulation: Cost in clients' payoff functions

▶ The payoff function for each client *i* is the reward minus the cost:

$$P_i(s_i, s_{-i}) = \sum_{t=1}^{T} r_{\lambda}(s_i^t, s_{-i}^t) - c_i(s_i^t).$$

► The cost function can be specified as

$$c_i(s_i^t) = \alpha_i s_i^t$$
 or $c_i(s_i^t) = \alpha_i (s_i^t)^2$,

where $\alpha_i > 0$ is the marginal cost rate.

▶ **Intuition:** Clients are willing to contribute effort when their costs are adequately compensated by the received rewards.

Existence of Nash equilibria

Theorem (Monderer and Shapley 1996)

Let $w=(w_i)_{i\in[m]}$ be a strictly positive vector. The game Γ is said to be a w-potential game if there exists a function $P\colon \mathcal{S}\to\mathbb{R}$ such that

$$P_i(s_i, s_{-i}) - P_i(x_i, s_{-i}) = w_i \left[P(s_i, s_{-i}) - P(x_i, s_{-i}) \right], \ \forall s_i, x_i \in \mathcal{S}_i, \ \forall i \in [m].$$

If $s^* \in \mathcal{S}$ is a global maximizer of P, then s^* is an NE of the game Γ .

Existence of NE in Γ_{FL} (Liu, Wang, and Zuazua 2024)

The game $\Gamma_{\rm FL}$ admits a w-potential given by

$$P_{\mathsf{FL}}(s) = \sum_{i=1}^{m} \sum_{t=1}^{T} \left(\frac{\lambda}{2} \rho_i^2(s_i^t)^2 - \rho_i c_i(s_i^t) \right) + \sum_{t=1}^{T} \frac{\lambda}{2} \left(\sum_{i=1}^{m} \rho_i s_i^t \right)^2, \quad s \in \mathcal{S},$$

where $c_i(\cdot)$ is client i's local cost, and $w_i=1/\rho_i$ for $i\in[m]$. If $\mathcal S$ is compact and $c_i(\cdot)$ is lower semicontinuous, then $\Gamma_{\sf FL}$ possesses at least one NE.

Stationary strategy set

$$S_i = \left\{ s_i \in \mathbb{R}_+^T \middle| q_i \le s_i^t = s_i^{\tau} \le Q_i, \ \forall \ t, \tau \in [T] \right\},\,$$

where q_i and Q_i represent the minimum and maximum efforts per round.

Definition (Stationary FL game $\hat{\Gamma}_{FL}$)

The stationary FL game $\hat{\Gamma}_{FL}$ contains:

- A set of players (clients) $[m] := \{1, \dots, m\};$
- lacktriangle Each client's strategy set $\hat{\mathcal{S}}_i = [q_i, Q_i]$;
- ▶ Each client's payoff function $\hat{P}_i: \hat{\mathcal{S}} \to \mathbb{R}$, with $\hat{\mathcal{S}} = \prod_{i \in [m]} \hat{\mathcal{S}}_i$, given by

$$\hat{P}_i(s_i, s_{-i}) = \lambda s_i \sum_{i=1}^m \rho_j s_j - \alpha_i s_i^2$$

Stationary strategy set

$$S_i = \left\{ s_i \in \mathbb{R}_+^T \middle| q_i \le s_i^t = s_i^{\tau} \le Q_i, \ \forall \ t, \tau \in [T] \right\},\,$$

where q_i and Q_i represent the minimum and maximum efforts per round.

Definition (Stationary FL game $\hat{\Gamma}_{FL}$)

The stationary FL game $\hat{\Gamma}_{\text{FL}}$ contains:

- ▶ A set of players (clients) $[m] := \{1, ..., m\};$
- lacktriangle Each client's strategy set $\hat{\mathcal{S}}_i = [q_i, Q_i]$;
- ▶ Each client's payoff function $\hat{P}_i: \hat{\mathcal{S}} \to \mathbb{R}$, with $\hat{\mathcal{S}} = \prod_{i \in [m]} \hat{\mathcal{S}}_i$, given by

$$\hat{P}_i(s_i, s_{-i}) = \frac{\lambda}{\lambda} s_i \sum_{j=1}^m \rho_j s_j - \alpha_i s_i^2.$$

Theorem (Liu, Wang, and Zuazua 2024)

For $\lambda>0$, the game $\ddot{\Gamma}_{\sf FL}$ has a unique NE, except at the critical point λ^* , which satisfies

$$\sum_{i=1}^{m} \frac{\lambda^*}{2\alpha_i/\rho_i - \lambda^*} = 1$$

If $\lambda = \lambda^*$, the game may have infinitely many NEs.

Corollary (Precise description of the unique NE)

The following statements hold.

- 1. If $\lambda \in (0, \lambda_1)$, the unique NE of the game Γ_{FL} is $s^* = (q_i)_{i \in [m]}$;
- 2. If $\lambda \in (\lambda_1, \lambda^*)$, the unique NE s^* satisfies $\bar{s}^* < c_1$;
- 3. If $\lambda \in (\lambda^*, \lambda_2)$, the unique NE s^* satisfies $\bar{s}^* > c_2$,
- 4. If $\lambda \in (\lambda_2, +\infty)$, the unique NE is $s^* = (Q_i)_{i \in [m]}$

Theorem (Liu, Wang, and Zuazua 2024)

For $\lambda>0$, the game $\ddot{\Gamma}_{\rm FL}$ has a unique NE, except at the critical point λ^* , which satisfies

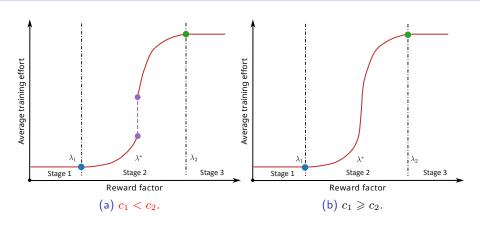
$$\sum_{i=1}^{m} \frac{\lambda^*}{2\alpha_i/\rho_i - \lambda^*} = 1$$

If $\lambda = \lambda^*$, the game may have infinitely many NEs.

Corollary (Precise description of the unique NE)

The following statements hold:

- 1. If $\lambda \in (0, \lambda_1)$, the unique NE of the game $\hat{\Gamma}_{\mathsf{FL}}$ is $s^* = (q_i)_{i \in [m]}$;
- 2. If $\lambda \in (\lambda_1, \lambda^*)$, the unique NE s^* satisfies $\bar{s}^* < c_1$;
- 3. If $\lambda \in (\lambda^*, \lambda_2)$, the unique NE s^* satisfies $\bar{s}^* > c_2$;
- 4. If $\lambda \in (\lambda_2, +\infty)$, the unique NE is $s^* = (Q_i)_{i \in [m]}$.



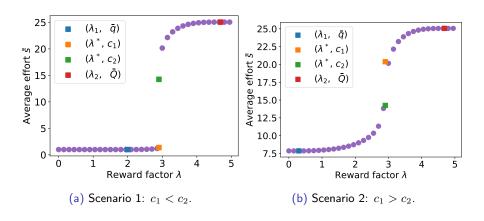
If $\alpha > 0$ and $\rho = 1/m$ are identical for all m clients:

$$\lambda^* = \frac{2m}{m+1}\alpha$$
, $c_1 = \max_{i \in [m]} \{q_i\}$, $c_2 = \min_{i \in [m]} \{Q_i\}$.

13 / 14

Ziqi Wang (FAU) Game Theory in Federated Learning

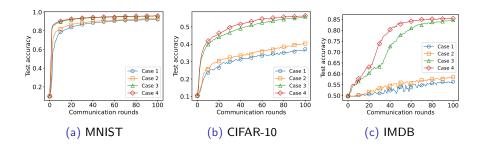
Simulation: Evolution of NEs and critical reward factors



▶ Activation point λ_1 , jump point λ^* , and saturation point λ_2 .

Simulation: FL training performance across four NE cases

- ▶ Case 1: selected before the activation point λ_1 .
- ▶ Case 2: selected before the jump point λ^* .
- **Case 3:** selected after the jump point λ^* (**recommended**).
- **Case 4:** selected after the saturation point λ_2 .



Thanks for your attention!

