
The implicit bias phenomenon in deep learning

Holger Rauhut
Department of Mathematics

Ludwig-Maximilians-Universität München

FAU MoD Seminar
December 3, 2024

Collaborators:
B. Bah, H. Chou, J. Maly, U. Terstiege, R. Ward, M. Westdickenberg

1 / 36



Mathematics of Deep Learning

Why does deep learning work?

Can we understand the inner workings of deep learning?

What can we prove about deep learning?

Mathematical aspects:
▶ Optimization: understanding algorithms ((stochastic) gradient

descent) for learning neural networks
Design of fast and energy efficient algorithms

▶ Generalization properties of deep neural networks
(performance on unseen data)

▶ Approximation theory of deep neural networks
▶ Stability properties (“adversarial noise”, stability under

perturbations, ...)
▶ Network architectures for specific tasks (inverse problems in

imaging, graph convolutional networks,...)

This talk: Convergence and Implicit bias of optimization algorithms
and role of sparsity / networks of low complexity

2 / 36



Mathematics of Deep Learning

Why does deep learning work?

Can we understand the inner workings of deep learning?

What can we prove about deep learning?

Mathematical aspects:
▶ Optimization: understanding algorithms ((stochastic) gradient

descent) for learning neural networks
Design of fast and energy efficient algorithms

▶ Generalization properties of deep neural networks
(performance on unseen data)

▶ Approximation theory of deep neural networks
▶ Stability properties (“adversarial noise”, stability under

perturbations, ...)
▶ Network architectures for specific tasks (inverse problems in

imaging, graph convolutional networks,...)

This talk: Convergence and Implicit bias of optimization algorithms
and role of sparsity / networks of low complexity

2 / 36



Mathematics of Deep Learning

Why does deep learning work?

Can we understand the inner workings of deep learning?

What can we prove about deep learning?

Mathematical aspects:
▶ Optimization: understanding algorithms ((stochastic) gradient

descent) for learning neural networks
Design of fast and energy efficient algorithms

▶ Generalization properties of deep neural networks
(performance on unseen data)

▶ Approximation theory of deep neural networks
▶ Stability properties (“adversarial noise”, stability under

perturbations, ...)
▶ Network architectures for specific tasks (inverse problems in

imaging, graph convolutional networks,...)

This talk: Convergence and Implicit bias of optimization algorithms
and role of sparsity / networks of low complexity

2 / 36



Learning deep neural networks

x1

x2

xN−1

xN

1

z1,1

z1,2

z1,3

z1,N1−2

z1,N1−1

z1,N1

z2,1

z2,2

z2,3

z2,4

z2,N1−3

z2,N1−2

z2,N1−1

z2,N1

1

zL−2,1

zL−2,2

zL−2,i

zL−2,i+1

zL−2,N1−1

zL−2,N1

1

zL−1,1

zL−1,2

zL−1,NL−1

1

y1

y2

...

...

...

...

...

...

...

...

...

· · ·

· · ·

· · ·

Deep neural network f : Rdx → Rdy

f (x) = gN ◦ gN−1 ◦ · · · ◦ g1(x) = gN(gN−1(· · · g1(x) · · · )),

with layers gj : Rdj−1 → Rdj with d0 = dx , dN = dy :

gj(x) = σ(Wjx + bj) with Wj ∈ Rdj×dj−1 , bj ∈ Rdj ,

σ : R → R: activation function acting componentwise

3 / 36



Supervised learning

Given input/output pairs (x1, y1), . . . , (xm, ym) ∈ Rdx × Rdy find
parameters W1, . . . ,WN of neural network f = fW1,...,WN

such that

f (xℓ) ≈ yℓ, ℓ = 1, . . . ,m.

Empirical risk minimization
Given a loss function ℓ : Rdy ×Rdy → R find the parameters of the
neural network as the minimizer of the empirical loss functional

L(W1, . . . ,WN) =
1

m

m∑
ℓ=1

ℓ(fW1,...,WN
(xℓ), yℓ)

4 / 36



Supervised learning

Given input/output pairs (x1, y1), . . . , (xm, ym) ∈ Rdx × Rdy find
parameters W1, . . . ,WN of neural network f = fW1,...,WN

such that

f (xℓ) ≈ yℓ, ℓ = 1, . . . ,m.

Empirical risk minimization
Given a loss function ℓ : Rdy ×Rdy → R find the parameters of the
neural network as the minimizer of the empirical loss functional

L(W1, . . . ,WN) =
1

m

m∑
ℓ=1

ℓ(fW1,...,WN
(xℓ), yℓ)

4 / 36



Gradient Descent and Stochastic Gradient Descent
Task: Minimization of L(W1, . . . ,WN) =

1
m

∑m
ℓ=1 ℓ(fW1,...,WN

(xℓ), yℓ)

Gradient Descent (GD):
Initialization: W 0

1 , . . . ,W
0
N

W k+1
j = W k

j − ηk∇WjL(W
k
1 , . . . ,W

k
N), j = 1, . . . ,N

with appropriate step sizes η0, η1, . . .

Stochastic Gradient Descent (SGD):

Initialization: W⃗ 0 = (W 0
1 , . . . ,W

0
N)

Iterate for k = 0, 1, 2, . . .:
Stochastic approximation V k

j : E[V k
j |W⃗ k ] = ∇WjL(W

k
1 , . . . ,W

k
N)

W k+1
j = W k

j − ηkV
k
j , j = 1, . . . ,N

Common example for stochastic gradient: Mini-batch gradient
Pick random subset J ⊂ {1, . . . ,m} of size q and set

V k
j =

1

q

∑
ℓ∈J

∇Wj ℓ(fW1,...,WN
(xℓ), yℓ)

5 / 36



Gradient Descent and Stochastic Gradient Descent
Task: Minimization of L(W1, . . . ,WN) =

1
m

∑m
ℓ=1 ℓ(fW1,...,WN

(xℓ), yℓ)

Gradient Descent (GD):
Initialization: W 0

1 , . . . ,W
0
N

W k+1
j = W k

j − ηk∇WjL(W
k
1 , . . . ,W

k
N), j = 1, . . . ,N

with appropriate step sizes η0, η1, . . .

Stochastic Gradient Descent (SGD):

Initialization: W⃗ 0 = (W 0
1 , . . . ,W

0
N)

Iterate for k = 0, 1, 2, . . .:
Stochastic approximation V k

j : E[V k
j |W⃗ k ] = ∇WjL(W

k
1 , . . . ,W

k
N)

W k+1
j = W k

j − ηkV
k
j , j = 1, . . . ,N

Common example for stochastic gradient: Mini-batch gradient
Pick random subset J ⊂ {1, . . . ,m} of size q and set

V k
j =

1

q

∑
ℓ∈J

∇Wj ℓ(fW1,...,WN
(xℓ), yℓ)

5 / 36



Convergence of (S)GD to minimizers?

Convergence of (S)GD to global minimizer can be shown under
suitable conditions on stepsize for convex loss functions.

For neural networks, the corresponding loss functions are
non-convex.

Nevertheless, (S)GD usually converges – at least to local
minimizers (with good generalization properties)

Can we understand convergence behavior of (S)GD in the context
of deep learning?

6 / 36



Convergence of (S)GD to minimizers?

Convergence of (S)GD to global minimizer can be shown under
suitable conditions on stepsize for convex loss functions.

For neural networks, the corresponding loss functions are
non-convex.

Nevertheless, (S)GD usually converges – at least to local
minimizers (with good generalization properties)

Can we understand convergence behavior of (S)GD in the context
of deep learning?

6 / 36



Convergence of (S)GD to minimizers?

Convergence of (S)GD to global minimizer can be shown under
suitable conditions on stepsize for convex loss functions.

For neural networks, the corresponding loss functions are
non-convex.

Nevertheless, (S)GD usually converges – at least to local
minimizers (with good generalization properties)

Can we understand convergence behavior of (S)GD in the context
of deep learning?

6 / 36



Convergence of (S)GD to minimizers?

Convergence of (S)GD to global minimizer can be shown under
suitable conditions on stepsize for convex loss functions.

For neural networks, the corresponding loss functions are
non-convex.

Nevertheless, (S)GD usually converges – at least to local
minimizers (with good generalization properties)

Can we understand convergence behavior of (S)GD in the context
of deep learning?

6 / 36



Implicit Bias – Some Puzzling Experiments

Tests with various convolutional networks on CIFAR-10 dataset with

m = 50 000 training samples (Zhang 2017); training via SGD
Architecture #params (p) p

m Training
loss

Test
accuracy

multi-layer perceptron 1 209 866 24.2 0.00 51.51%
Alexnet 1 387 786 27.8 0.00 76.97%
Inception 1 649 402 33 0.00 85.75%

Wide Resnet 8 950 000 179 0.00 88.21%

More network parameters than training data!
▶ Training error always zero on various network architectures

(network fits training data exactly)
▶ Generalization error decreases with increasing number of

parameters
→ Counterintuitive to traditional statistics (overfitting)

see also: Zhang, Bengio, Hardt, Recht, Vinyals (2016; 2021). Understanding
deep learning (still) requires rethinking generalization. Communications of the
ACM 64:3. pp. 107–115.

7 / 36



Overparameterization and Implicit Bias

▶ Overparameterized scenario: many networks exist that
interpolate the data exactly

▶ Empirical loss has many global minimizers (with zero loss)

▶ Employed optimization algorithm (including initialization and
hyperparameters such as learning rate) influences the
computed minimizers, i.e., leads to an implicit bias!

Understanding generalization error in deep learning requires
understanding of optimization algorithms for learning:

In general, this phenomenon is far from being understood.

8 / 36



Overparameterization and Implicit Bias

▶ Overparameterized scenario: many networks exist that
interpolate the data exactly

▶ Empirical loss has many global minimizers (with zero loss)

▶ Employed optimization algorithm (including initialization and
hyperparameters such as learning rate) influences the
computed minimizers, i.e., leads to an implicit bias!

Understanding generalization error in deep learning requires
understanding of optimization algorithms for learning:

In general, this phenomenon is far from being understood.

8 / 36



Working hypothesis and Simplification

Working hypothesis:
Implicit bias of (stochastic) gradient descent towards solutions of
low complexity (for small initialization)

For a first understanding reduce to simple optimization problems
that have similar characteristics as deep learning models:

▶ Many global minimizers

▶ Factorization / Compositional structure

→ implicit bias towards low rank / sparsity

9 / 36



Working hypothesis and Simplification

Working hypothesis:
Implicit bias of (stochastic) gradient descent towards solutions of
low complexity (for small initialization)

For a first understanding reduce to simple optimization problems
that have similar characteristics as deep learning models:

▶ Many global minimizers

▶ Factorization / Compositional structure

→ implicit bias towards low rank / sparsity

9 / 36



General idea of implicit bias

Hope/expect that limit W∞ = limt→∞W (t) of gradient flow /
(stochastic) gradient descent satisfies

min
W

R(W ) subject to fW (xj) = yj for all j = 1, . . . ,m

Regularizer R depends on algorithm, network architecture,
initialization and possibly step sizes

Hypotheses

▶ For suitable initialization and step sizes R promotes solutions
of low complexity

▶ Real-world data distributions can be modeled well with neural
networks with such low complexity structures, leading to good
generalization

10 / 36



General idea of implicit bias

Hope/expect that limit W∞ = limt→∞W (t) of gradient flow /
(stochastic) gradient descent satisfies

min
W

R(W ) subject to fW (xj) = yj for all j = 1, . . . ,m

Regularizer R depends on algorithm, network architecture,
initialization and possibly step sizes

Hypotheses

▶ For suitable initialization and step sizes R promotes solutions
of low complexity

▶ Real-world data distributions can be modeled well with neural
networks with such low complexity structures, leading to good
generalization

10 / 36



Model problem: Sparse recovery
For A ∈ Rm×n with m < n and y ∈ Rm consider

L(x) = 1

2
∥Ax − y∥22

L1 has many global minimizers: all solutions x of Ax = y

Factorization: x = w (N) ⊙ · · · ⊙ w (2) ⊙ w (1) with vectors
w (j) ∈ Rn and Hadamard product (v ⊙ w)i = viwi .

LN(w (1), . . . ,w (N)) = L(w (N) ⊙ · · · ⊙ w (1))

=
1

2
∥A(w (N) ⊙ · · · ⊙ w (2) ⊙ w (1))− y∥22

Minimize LN via gradient descent / gradient flow!
Properties of limit?

Compressed sensing task: Compute sparse solution of Ax = y !
Standard approach: ℓ1-minimization

min ∥x∥1 subject to Ax = y

11 / 36



Model problem: Sparse recovery
For A ∈ Rm×n with m < n and y ∈ Rm consider

L(x) = 1

2
∥Ax − y∥22

L1 has many global minimizers: all solutions x of Ax = y

Factorization: x = w (N) ⊙ · · · ⊙ w (2) ⊙ w (1) with vectors
w (j) ∈ Rn and Hadamard product (v ⊙ w)i = viwi .

LN(w (1), . . . ,w (N)) = L(w (N) ⊙ · · · ⊙ w (1))

=
1

2
∥A(w (N) ⊙ · · · ⊙ w (2) ⊙ w (1))− y∥22

Minimize LN via gradient descent / gradient flow!
Properties of limit?

Compressed sensing task: Compute sparse solution of Ax = y !
Standard approach: ℓ1-minimization

min ∥x∥1 subject to Ax = y

11 / 36



Model problem: Sparse recovery
For A ∈ Rm×n with m < n and y ∈ Rm consider

L(x) = 1

2
∥Ax − y∥22

L1 has many global minimizers: all solutions x of Ax = y

Factorization: x = w (N) ⊙ · · · ⊙ w (2) ⊙ w (1) with vectors
w (j) ∈ Rn and Hadamard product (v ⊙ w)i = viwi .

LN(w (1), . . . ,w (N)) = L(w (N) ⊙ · · · ⊙ w (1))

=
1

2
∥A(w (N) ⊙ · · · ⊙ w (2) ⊙ w (1))− y∥22

Minimize LN via gradient descent / gradient flow!
Properties of limit?

Compressed sensing task: Compute sparse solution of Ax = y !
Standard approach: ℓ1-minimization

min ∥x∥1 subject to Ax = y

11 / 36



Loss functions on factorizations

Gradient descent/flow for loss functions:

L(x) := 1

2
∥Ax − y∥22,

LN(w (1), . . . ,w (N)) := L(w (N) ⊙ · · · ⊙ w (1)),

LN±(u
(1), . . . , u(N),v (1), · · · , v (N)) := L

(
N⊙

k=1

u(k) −
N⊙

k=1

v (k)

)

Hadamard product (w (1) ⊙ w (2))j = w
(1)
j w

(2)
j

12 / 36



Gradient flow
“Non-factorized” gradient flow x(t) = −∇L(x(t)) with x(0) = 0
converges to least squares solution

x∞ = lim
t→∞

x(t) = arg min
z:Az=y

∥z∥2.

Gradient flow for overparameterized loss functionals, with
initialization scale α > 0,

d

dt
w (k)(t)= −∇w (k)LN(w (1)(t), . . . ,w (N)(t)), w (k)(0) = w0 > 0,

d

dt
u(k)(t)= −∇u(k)L

N
±(u

(1)(t), . . . , u(N)(t), v (1)(t), . . . , v (N)(t)),

d

dt
v (k)(t)= −∇v (k)LN

±(u
(1)(t), . . . , u(N)(t), v (1)(t), . . . , v (N)(t)),

u(k)(0) = u0 > 0, v (k)(0) = v0 > 0, k = 1, . . . ,N

Convergence of x̃(t) := w (N)(t)⊙ · · · ⊙ w (1)(t) and
x̂(t) :=

⊙N
k=1 u

(k)(t)−
⊙N

k=1 v
(k)(t)?

Properties of limit?

13 / 36



Gradient flow
“Non-factorized” gradient flow x(t) = −∇L(x(t)) with x(0) = 0
converges to least squares solution

x∞ = lim
t→∞

x(t) = arg min
z:Az=y

∥z∥2.

Gradient flow for overparameterized loss functionals, with
initialization scale α > 0,

d

dt
w (k)(t)= −∇w (k)LN(w (1)(t), . . . ,w (N)(t)), w (k)(0) = w0 > 0,

d

dt
u(k)(t)= −∇u(k)L

N
±(u

(1)(t), . . . , u(N)(t), v (1)(t), . . . , v (N)(t)),

d

dt
v (k)(t)= −∇v (k)LN

±(u
(1)(t), . . . , u(N)(t), v (1)(t), . . . , v (N)(t)),

u(k)(0) = u0 > 0, v (k)(0) = v0 > 0, k = 1, . . . ,N

Convergence of x̃(t) := w (N)(t)⊙ · · · ⊙ w (1)(t) and
x̂(t) :=

⊙N
k=1 u

(k)(t)−
⊙N

k=1 v
(k)(t)?

Properties of limit?
13 / 36



Simplification for identical initialization
For identical initialization w (k)(0) = w0 > 0 and
u(k)(0) = u0 > 0, v (k)(0) = v0 > 0 for all k = 1, . . . ,N, it holds

w (1)(t)= · · · = w (N)(t)

u(1)(t)= · · · = u(N)(t), v (1)(t) = · · · = v (N)(t).

Therefore,

x̃(t)= w (1)(t)⊙N = w(t)⊙N

x̂(t)= u(1)(t)⊙N − v (1)(t)⊙N = u(t)⊙N − v(t)⊙N

where w(t) and u(t), v(t) are the gradient flows for

L(w)= L(w⊙N) =
1

2
∥Aw⊙N − y∥22,

L±(u, v)= L(u⊙N − v⊙N)

Again, we set

x̃(t) = w⊙N(t), x̂(t) = u⊙N(t)− v⊙N(t).

In the following we will use w0 = u0 = v0 = α(1, . . . , 1)T .
14 / 36



Numerics for positive case (Gaussian measurements)

ℓ1 minimization on Rn
+ GD on LN with N = 1

GD on LN with N = 2 GD on LN with N = 3
15 / 36



Numerical experiments for general case

ℓ1 minimization GD on LN
± with N = 2

GD on LN
± with N = 3 GD on LN

± with N = 4
16 / 36



Convergence to approximate ℓ1-minimizer: positive case

Theorem (Chou, Maly, R 2022)

Let N ≥ 2 and assume S+ = {z ≥ 0 : Az = y} is not empty. Then
the limit x̃∞ = limt→∞ x̃(t) = limt→∞ w⊙N(t) exists and
x̃∞ ∈ S+. Moreover, let

Q = min
z∈S+

∥z∥1, β1 = ∥x̃(0)∥1 = α
√
N, βmin = min

n∈[N]
x̃n(0) = α.

If β1 < Q, then
∥x̃∞∥1 − Q ≤ ϵQ,

where ϵ is given as

ϵ =


log(β1/βmin)
log(Q/β1)

if N = 2,

N
2 · β

1− 2
N

1 −β
1− 2

N
min

Q1− 2
N −β

1− 2
N

1

if N > 2.

Note: If N > 2 and β
1−2/N
1 ≤ Q1−2/N/2 then ϵ ≤ N(β1/Q)1−2/N

17 / 36



A general framework for characterizing the implicit bias
Approach by Gunasekar, Lee, Soudry, Srebro (2018):
Suppose that a flow x : [0,∞) → Rn satisfies

d

dt
x(t) = −H(x(t))−1∇L(x(t))

for some matrix valid function H = ∇2F : Rn → Rn×n for some
F : Rn → R. Loss of the form L(x) = 1

m

∑m
ℓ=1 ℓ((Ax)j , yj)

Bregman divergence

DF (x , z) = F (x)− F (z)− ⟨∇F (z), x − z⟩

Theorem (Gunasekar, Lee, Soudry, Srebro, 2018)

If x∞ = limt→∞ x(t) exists and L(x∞) = 0 then x∞ is minimizer of

min
x

DF (x , x(0)) subject to Ax = y .

18 / 36



Bregman divergence

For

F (x) =

{
1
2

∑n
k=1 xk log(xk)− xk if N = 2,

− N
2(N−2)

∑n
k=1 x

2/N
k if N > 2

the Bregman divergence is

DF (z , x) =


1
2

n∑
k=1

zk log(zk/xk) +
1
2

∑n
k=1(xk − zk) if N = 2,

1
2(N−2)

n∑
k=1

(
(N − 2)x

2
N
k + 2zkx

2
N
−1

k − Lz
2
N
k

)
if N > 2

Kullback-Leibler divergence for N = 2

19 / 36



Convergence to minimizer of Bregman divergence

Theorem (Chou, Maly, R 2022)

Let N ≥ 2 and assume S+ = {z ≥ 0 : Az = y} is not empty. Then
the limit x̃∞ = limt→∞ x̃(t) = limt→∞ w⊙N(t) exists and
x̃∞ ∈ S+. Moreover,

x̃∞ ∈ argminz∈S+ DF (z , x̃(0)) = argminz∈S+ gx̃(0)(z)

where

gx̃(z) =

{∑n
k=1 zk(log(zk)− 1− log(x̃k)) if N = 2,

2∥z∥1 − N
∑n

k=1 z
2
N
k x̃

1− 2
L

k if N > 2.

20 / 36



Convergence to approximate ℓ1-minimizer: general case

Theorem (Chou, Maly, R 2022)

Let N ≥ 2 and assume S = {z : Az = y} is not empty. Consider
the flow (u(t), v(t)) and the corresponding ”product flow”
x̂(t) = u⊙N(t)− v⊙N(t). Then the limit x̂∞ = limt→∞ x̂(t) exists
and Ax̂∞ = y . Moreover, let Q = minz∈S ∥z∥1 and

β1 = ∥u⊙N(0)∥1 + ∥v⊙N(0)∥1 = 2α
√
N,

βmin = min
k∈[N]

min{uNk (0), vNk (0)} = α.

If β1 < Q, then
∥x̂∞∥1 − Q ≤ ϵQ,

where ϵ is given as

ϵ =


log(β1/βmin)
log(Q/β1)

if N = 2,

N
2 · β

1− 2
N

1 −β
1− 2

N
min

Q1− 2
N −β

1− 2
N

1

if N > 2.

21 / 36



General initialization

Results stated for initialization

w(0) = u(0) = v(0) = α1.

For general initialization w(0), u(0), v(0) > 0 we obtain
convergence to (approximate) weighted ℓ1-minimization with
weight h depending on initialization,

h = w(0)⊙
2
L
−1

22 / 36



Compressive sensing from Gaussian matrices via gradient
flow

Corollary (Chou, Maly, R 2022)

Choose A to be a random Gaussian matrix in Rm×n with

m ≥ Cρ−2s log(en/s)

for some constant ρ ∈ (0, 1). Then the following holds with
probability at least 1− e−cm. Let x ∈ Rn and y = Ax . Then the
limit x̂∞ of the product flow satisfies

∥x̂∞ − x∥1 ≤
1 + ρ

1− ρ
(2σs(x)1 + ϵ) ,

where ϵ is defined as before.

Extension to noisy measurements possible
(via so-called ℓ1-quotient property)

23 / 36



Weight normalization

Previous results require small initialization scale α.
Small initialization leads to high computation time
(flow needs to escape neighborhood of saddle point zero)

Is it possible to work with larger initialization?

Weight normalization
In practice, the weights are often normalized in (stochastic)
gradient descent, improving stability and generalization.

24 / 36



Weight normalization

Previous results require small initialization scale α.
Small initialization leads to high computation time
(flow needs to escape neighborhood of saddle point zero)

Is it possible to work with larger initialization?

Weight normalization
In practice, the weights are often normalized in (stochastic)
gradient descent, improving stability and generalization.

24 / 36



Normalized gradient flow
Separate w into magnitude and direction

w = r
v

∥v∥
with r ≥ 0, v ∈ Rn,

and set

L̃(r , v) = L
(
r

v

∥v∥

)
=

1

2

∥∥∥∥∥A
(
r

v

∥v∥

)⊗N

− y

∥∥∥∥∥
2

2

Gradient flow with different rates for r and w :

d

dt
r(t) = −ηr∇r L̃(r , v), r(0) = r0 > 0

d

dt
v(t) = −∇v L̃(r , v), v(0) =

1√
n
1 > 0

Denote w(t) = r(t) v(t)
∥w(t)∥2 and x̃(t) = w(t)⊙N .

Separating scales, i.e., ηr ≪ 1, important for removing need for
small initialization

25 / 36



Normalized gradient flow
Separate w into magnitude and direction

w = r
v

∥v∥
with r ≥ 0, v ∈ Rn,

and set

L̃(r , v) = L
(
r

v

∥v∥

)
=

1

2

∥∥∥∥∥A
(
r

v

∥v∥

)⊗N

− y

∥∥∥∥∥
2

2

Gradient flow with different rates for r and w :

d

dt
r(t) = −ηr∇r L̃(r , v), r(0) = r0 > 0

d

dt
v(t) = −∇v L̃(r , v), v(0) =

1√
n
1 > 0

Denote w(t) = r(t) v(t)
∥w(t)∥2 and x̃(t) = w(t)⊙N .

Separating scales, i.e., ηr ≪ 1, important for removing need for
small initialization

25 / 36



Magnification of implicit regularization
Theorem (Chou, R, Ward 2023)
Let N ≥ 2, assume that Av = 0 for some v > 0 and that
S+ = {z ≥ 0 : Az = y} is not empty. Suppose that x̃∞ = limt→∞ x̃(t)

exists and denote r∞ = ∥x̃⊙1/N
∞ ∥2. Define the magnification factor as

ρ :=
r0
r∞

exp

(
r2∞ − r20

ηr

)
.

Moreover, let

Q = min
z∈S+

∥z∥1, β1 = ∥x̃(0)∥1 = rN0
√
n, βmin = min

n∈[N]
x̃n(0) = rN0 .

If cNβ1 < Q, with c2 = 1 and cN = (N/2)N/(N−2) for N > 2 then

∥x̃∞∥1 − Q ≤ ϵ(ρ−Nβ1, ρ
−Nβmin)Q,

where ϵ is given as before, in particular, ϵ(ρ−Nβ1, ρ
−Nβmin) =

log(β1/βmin)
log(ρNQ/β1)

if N = 2 and ϵ(ρ−Nβ1, ρ
−Nβmin) =

N
2 · β

1− 2
N

1 −β
1− 2

N
min

ρN−2Q1− 2
N −β

1− 2
N

1

if N > 2.

26 / 36



Model problem: Low rank matrix recovery

Task: Recover a matrix W ∈ Rn1×n2 of rank r ≪ min{n1, n2} from
m ≪ n1n2 linear measurements (Candès, Recht ’09; Candès, Plan ’10;

Gross et al ’10; Kueng, Rauhut, Terstiege ’17, ...)

y = A(W ) ∈ Rm, A : Rn1×n2 → Rm.

Underdetermined linear system with rank-constraint

27 / 36



Recovery via gradient descent on matrix factorization?
Let W ∈ Rn×n of rank r ≪ n and

y = A(W ) ∈ Rm, A : Rn×n → Rm, m ≪ n2.

for a suitable linear map A.

Deep matrix factorization (linear neural network):
Set Z = WN · · ·W2 ·W1 and minimize

LA(W1, . . . ,WN) = ∥y −A(WN · · ·W1)∥22

via gradient descent on (WN , . . . ,W1).

If Wj ∈ Rnj×nj−1 , r := minj nj then

rank(W ) = rank(WN · · ·W1) ≤ r .

Implicit bias (recovery) in the setting Wj ∈ Rn×n for all
j = 1, . . . ,N?

28 / 36



Recovery via gradient descent on matrix factorization?
Let W ∈ Rn×n of rank r ≪ n and

y = A(W ) ∈ Rm, A : Rn×n → Rm, m ≪ n2.

for a suitable linear map A.

Deep matrix factorization (linear neural network):
Set Z = WN · · ·W2 ·W1 and minimize

LA(W1, . . . ,WN) = ∥y −A(WN · · ·W1)∥22

via gradient descent on (WN , . . . ,W1).

If Wj ∈ Rnj×nj−1 , r := minj nj then

rank(W ) = rank(WN · · ·W1) ≤ r .

Implicit bias (recovery) in the setting Wj ∈ Rn×n for all
j = 1, . . . ,N?

28 / 36



Recovery via gradient descent on matrix factorization?
Let W ∈ Rn×n of rank r ≪ n and

y = A(W ) ∈ Rm, A : Rn×n → Rm, m ≪ n2.

for a suitable linear map A.

Deep matrix factorization (linear neural network):
Set Z = WN · · ·W2 ·W1 and minimize

LA(W1, . . . ,WN) = ∥y −A(WN · · ·W1)∥22

via gradient descent on (WN , . . . ,W1).

If Wj ∈ Rnj×nj−1 , r := minj nj then

rank(W ) = rank(WN · · ·W1) ≤ r .

Implicit bias (recovery) in the setting Wj ∈ Rn×n for all
j = 1, . . . ,N?

28 / 36



Low rank matrix recovery via deep matrix factorization

Numerical experiment

Recovery of X ∈ R20×20 of rank 2 from Gaussian random measurements

Satisfying theory not yet available

29 / 36



More work on implicit bias of gradient descent/flow
▶ Analysis of (S)GD for two-layer diagonal networks (sparse recovery)

Evan, Pesme, Gunasekar, Flammarion (2023)

▶ Recovery of positive semidefinite matrices from commuting set of
measurements Aj , yj = tr(AT

j X ), for gradient flow on factorization
W = UUT ; convergence to nuclear norm minimizer (Problem:
Commuting measurements Aj very restrictive!)
Gunasekar, Woodworth, Bhojanapalli, Neyshabur, Srebro 2017

Arora, Cohen, Hu, Luo 2019

▶ Recovery of positive semidefinite matrices from Gaussian measurements
for gradient flow on factorization W = UUT

Stöger, Soltanolkotabi 2021

▶ Implicit bias of GD for classification with fully connected and
convolutional neuronal networks
Soudry, Hoffer, Nacson, Gunasekar, N. Srebro 2018 Gunasekar, Lee, Soudry,

Srebro 2018

▶ Dynamics and implicit bias for GD on matrix estimation problems
Chou, Maly, Rauhut 2020

▶ Early alignment for gradient flow on two-layer ReLU-networks

Flammarion, Boursier 2024

30 / 36



Product flow for matrix factorization
For a general loss L : Rd0×dN → R consider

LN(W1, . . . ,WN) = L(WN · · ·W1), Wj ∈ Rdj−1×dj

and associated gradient flow

d

dt
Wj(t) = −∇Wj

LN(W1(t), . . . ,WN(t)).

Product flow
W (t) = WN(t) · · ·W1(t)

Under balancedness: Wj+1(0)
TWj+1(0) = Wj(0)Wj(0)

T it holds

d

dt
W = −

N∑
j=1

(WW T )
N−j
N · ∇L1

(
W
)
· (W TW )

j−1
N .

For W ,Z ∈ Rd0×dN introduce the map

AW (Z ) = AN
W (Z ) =

N∑
j=1

(WW T )
N−j
N · Z · (W TW )

j−1
N .

31 / 36



Riemannian manifold of rank r matrices
Rank of W = WN · · ·W1, Wj ∈ Rdj×dj−1 at most r = minj=0,...,N dj
Mk : manifold or matrices W ∈ Rdy×dx of rank k
Tangent space of Mk at W ∈ Mk :

TW (Mk) =
{
WA+ BW : A ∈ Rdx×dx ,B ∈ Rdy×dy

}
.

Theorem (Bah, Rauhut, Terstiege, Westdickenberg 2020)

Let N ≥ 2. For W ∈ Mk , the restriction
ĀW : TW (Mr ) → TW (Mk) of AW to TW (Mr ) is self-adjoint
and positive definite, hence invertible.
For W ∈ Rdy×dx , the bilinear map

gW (Z1,Z2) := ⟨Ā−1
W (Z1),Z2⟩F , Z1,Z2 ∈ TW (Mk),

defines a Riemannian metric on Mk of class C 1.

Explicit formula for Riemannian metric

gW (Z1,Z2) =
sin(π/N)

π

∫ ∞

0

tr
(
(tI +WW T )−1Z1(tI +W TW )−1ZT

2

)
t1/Ndt

32 / 36



Riemannian manifold of rank r matrices
Rank of W = WN · · ·W1, Wj ∈ Rdj×dj−1 at most r = minj=0,...,N dj
Mk : manifold or matrices W ∈ Rdy×dx of rank k
Tangent space of Mk at W ∈ Mk :

TW (Mk) =
{
WA+ BW : A ∈ Rdx×dx ,B ∈ Rdy×dy

}
.

Theorem (Bah, Rauhut, Terstiege, Westdickenberg 2020)

Let N ≥ 2. For W ∈ Mk , the restriction
ĀW : TW (Mr ) → TW (Mk) of AW to TW (Mr ) is self-adjoint
and positive definite, hence invertible.
For W ∈ Rdy×dx , the bilinear map

gW (Z1,Z2) := ⟨Ā−1
W (Z1),Z2⟩F , Z1,Z2 ∈ TW (Mk),

defines a Riemannian metric on Mk of class C 1.

Explicit formula for Riemannian metric

gW (Z1,Z2) =
sin(π/N)

π

∫ ∞

0

tr
(
(tI +WW T )−1Z1(tI +W TW )−1ZT

2

)
t1/Ndt

32 / 36



Riemannian manifold of rank r matrices
Rank of W = WN · · ·W1, Wj ∈ Rdj×dj−1 at most r = minj=0,...,N dj
Mk : manifold or matrices W ∈ Rdy×dx of rank k
Tangent space of Mk at W ∈ Mk :

TW (Mk) =
{
WA+ BW : A ∈ Rdx×dx ,B ∈ Rdy×dy

}
.

Theorem (Bah, Rauhut, Terstiege, Westdickenberg 2020)

Let N ≥ 2. For W ∈ Mk , the restriction
ĀW : TW (Mr ) → TW (Mk) of AW to TW (Mr ) is self-adjoint
and positive definite, hence invertible.
For W ∈ Rdy×dx , the bilinear map

gW (Z1,Z2) := ⟨Ā−1
W (Z1),Z2⟩F , Z1,Z2 ∈ TW (Mk),

defines a Riemannian metric on Mk of class C 1.

Explicit formula for Riemannian metric

gW (Z1,Z2) =
sin(π/N)

π

∫ ∞

0

tr
(
(tI +WW T )−1Z1(tI +W TW )−1ZT

2

)
t1/Ndt

32 / 36



Riemannian gradient flow

Riemannian gradient associated to metric g

∇gL(W ) = AW (∇L(W )),

where ∇L is standard gradient of L, i.e.,

gW (∇gL(W ),Z ) = ⟨∇L(W ),Z ⟩F for all Z ∈ TW (Mr ),

Assuming balancedness and W (0) ∈ Mk we recover the flow for
W (t) as Riemannian gradient flow on Mk

d

dt
W (t) = −∇gL(W (t)) = −AW (t) (∇L(W (t))).

Note: If W (0) ∈ Mk then W (t) ∈ Mk for all t ≥ 0.

33 / 36



Implicit bias towards solutions of large intrinsic volume
Riemannian volume form for g : For W ∈ Rn×n of full rank n with
singular value decomposition W = UΣV T , Σ = diag(σ1, . . . , σn),√

det gdW = N
n(n−1)

2 det(Σ2)
1−N
2N van(Σ2/N)︸ ︷︷ ︸

=:v(W )

dΣdUdV

where dU, dV denote Haar measure on O(n) and van(Σ2/N) is
Vandermonde determinant of the diagonal of Σ2/N :

van(Σ2/N) =
∏

1≤i<j≤n

(σ
2/N
i − σ

2/N
j ).

Numerical experiments on small matrix completion problems by
Cohen et al. (2022) indicate implicit bias of gradient flow towards
solutions with large intrinsic Riemannian volume v(W ).

Note: v(W ) = ∞ for W of rank r < n.

N. Cohen, G. Menon, Z. Veraszto (2022). Deep Linear Networks for Matrix
Completion – An Infinite Depth Limit. arXiv:2210.12497

34 / 36



Implicit bias towards solutions of large intrinsic volume
Riemannian volume form for g : For W ∈ Rn×n of full rank n with
singular value decomposition W = UΣV T , Σ = diag(σ1, . . . , σn),√

det gdW = N
n(n−1)

2 det(Σ2)
1−N
2N van(Σ2/N)︸ ︷︷ ︸

=:v(W )

dΣdUdV

where dU, dV denote Haar measure on O(n) and van(Σ2/N) is
Vandermonde determinant of the diagonal of Σ2/N :

van(Σ2/N) =
∏

1≤i<j≤n

(σ
2/N
i − σ

2/N
j ).

Numerical experiments on small matrix completion problems by
Cohen et al. (2022) indicate implicit bias of gradient flow towards
solutions with large intrinsic Riemannian volume v(W ).

Note: v(W ) = ∞ for W of rank r < n.

N. Cohen, G. Menon, Z. Veraszto (2022). Deep Linear Networks for Matrix
Completion – An Infinite Depth Limit. arXiv:2210.12497

34 / 36



Open Questions

▶ Extensions from gradient flow to (stochastic) gradient descent
(work in progress)

▶ Matrix case

▶ Nonlinear networks (work on ReLU-networks in progress)

▶ ...

General question

▶ Do we really need to start with network structures having
millions or billions of learnable weights?

▶ Can we exploit insights on bias to low complexity network
structures when designing algorithms / networks?

▶ High-dimensionality required because of intrinsic hardness of
learning?

35 / 36



Thanks very much for your attention!

References:
B. Bah, H. Rauhut, U. Terstiege, M. Westdickenberg (2022). Learning deep linear
neural networks: Riemannian gradient flows and convergence to global minimizers.
Information and Inference 11(1):307–353.

M. Nguegnang, H. Rauhut, U. Terstiege (2024). Convergence of gradient descent for
learning linear neural network. Advances in Continuous and Discrete Models, article
number 23.

H.-H. Chou, C. Gieshoff, J. Maly, H. Rauhut (2024). Gradient Descent for Deep
Matrix Factorization: Dynamics and Implicit Bias towards Low Rank. Applied and
Computational Harmonic Analysis (68), 101595.

H.-H. Chou, J. Maly, H. Rauhut (2023). More is Less: Inducing Sparsity via
Overparameterization. Information and Inference 12(3), 1437-1460.

H.-H. Chou, H. Rauhut, R. Ward (2024). Robust Implicit Regularization via Weight
Normalization, Information and Inference 13(3), iaae022.

36 / 36


