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Mixing phenomena

Mixing is to disperse one material or field in another medium. It occurs in many natural phenomena and
industrial applications.

Mixing in painting Mixing in baking
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Mixing phenomena

Spreading of a pollutant in the atmosphere

Mixing of temperature, salt, and nutrient in ocean∗.

∗http://www.waterencyclopedia.com/Mi-Oc/Ocean-Mixing.html
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Mixing phenomena

Microfluidic devices have allowed to make significant progress in biomedical diagnostics study, development of
microfluidic and nanofluidic biosensors, in DNA analysis, chemical synthesis and genomics study, etc.

Controllable and fast mixing is critical for practical development of microfluidic and lab-on-chip devices∗.

∗https://www.elveflow.com/microfluidic-reviews/microfluidic-flow-control/microfluidic-mixers-a-short-review/
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“Good mixing”: stirring + diffusion

Mixing means a physical process where both the stirring (or advective mechanism) and the
diffusion occur simultaneously.

Stirring means the advection of material blobs subjected to mixing without diffusive action.

Diffusion is the averaged effect of small scale random (Gaussian) particle motions.

Cartoon illustration of the exchange of molecules across an interface between two different fluids activated by
the molecules’ random motion; (a) before starting the exchange, (b) instantaneous state during the exchange∗

∗Y.-K. Suh and S. Kang, A review on mixing in microfluidics, Micromachines, 1(3),82–111, 2010.

6



“Good mixing”: stirring + diffusion

Mixing means a physical process where both the stirring (or advective mechanism) and the
diffusion occur simultaneously.

Stirring means the advection of material blobs subjected to mixing without diffusive action.

Diffusion is the averaged effect of small scale random (Gaussian) particle motions.

Cartoon illustration of the exchange of molecules across an interface between two different fluids activated by
the molecules’ random motion; (a) before starting the exchange, (b) instantaneous state during the exchange∗

∗Y.-K. Suh and S. Kang, A review on mixing in microfluidics, Micromachines, 1(3),82–111, 2010.

6



“Good mixing”: stirring + diffusion

Mixing means a physical process where both the stirring (or advective mechanism) and the
diffusion occur simultaneously.

Stirring means the advection of material blobs subjected to mixing without diffusive action.

Diffusion is the averaged effect of small scale random (Gaussian) particle motions.

Cartoon illustration of the exchange of molecules across an interface between two different fluids activated by
the molecules’ random motion; (a) before starting the exchange, (b) instantaneous state during the exchange∗

∗Y.-K. Suh and S. Kang, A review on mixing in microfluidics, Micromachines, 1(3),82–111, 2010.

6



Diffusive mixing

In the region near the interface, molecules on both sides have different properties, and so random molecular motion
results in permeation of molecules from one side to the other. Such permeation is called diffusion.

The flux of one species through the interface is proportional to the gradient of the concentration of the species
(so-called Fick’s law), and the proportional constant is defined as molecular diffusivity.

Diffusive mixing can be made effective if there are sufficiently small blobs of one fluid immersed in a region of the
other fluids; when the length-scale of these blobs reaches the diffusive length-scales, these blobs diffusive into the
outer fluid, resulting in good mixing. If the blobs are too big, diffusive mixing is inefficient.
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Mixing via an advection-driven diffusion process

To summarize,

“Good mixing” of low-diffusivity materials occurs in two stages: stirring in the first stage and
diffusion in the second stage∗.

The advective strategy (such as chaotic stretching and folding) should lead to fluid blobs or
filaments, whose shapes are able to enhance diffusive mixing.

∗S. Balasuriya, Dynamical systems techniques for enhancing microfluidic mixing, J. Micromech. Microeng., 25(9),094005, 2015.
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Advective mechanisms for fluidic transport and mixing

In this talk, we focus on

Advection dominant case (molecular diffusion is negligible).

It is possible to utilize purely advective mechanisms to create an additional fluid velocity to obtain
complicated mixing (chaotic mixing) in fluids in which the velocity field is completely regular∗.

Time-variation in the velocity may generate chaotic transport, which in practice can be achieved by
either active or passive approaches.

∗H. Aref, Stirring by chaotic advection, Hamiltonian Dynamical Systems, 725–745, 2020.
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Advective mechanisms: active approaches

Active approaches: supply an energy to the system.

For example, stirring a fluid back and forth can generate fluctuating velocities with respect to the
flow barriers, therefore engenders transport across them to achieve better mixing.
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Advective mechanisms: passive approaches

Passive approaches do not supply energy, but use passive mechanisms to aid velocity agitations.

For example, one can have bends or curves in microchannels to passively generate anomalous velocities. Even if the
flow in the curved channel remains steady, it can cause unsteady flows across flow barriers and generating transport.

Passive micromixer based on curly baffles∗

∗M. Juraeva, D.-J. Kang, Design and mixing analysis of a passive micromixer based on curly baffles, Micromachines, 14(9), 1795, 2023.
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Measures for qualifying mixing

Consider that the fluid trajectories are given by the solutions of the ordinary differential equation

dX (t, t0; x)

dt
= v(t,X (t, t0; x)), (1)

X (t0, t0; x) = x ∈ Rd , d ≥ 1. (2)

Equation (1) is the Lagrangian specification of the flow field, representing the rate of change of
position of each fluid particle given by its velocity.

Solving (1)-(2), the Lagrangian trajectories of the particles in the fluid can be determined.

The conditions

∇ · v = 0, i .e., ∂x1v1 + ∂x2v2 = 0 (d = 2),

are equivalent to imposing that for each time t, t0 the map X (t, t0; ·) : Rd → Rd is area preserving.
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Measures for qualifying mixing

Knowing the velocity field itself, however, does not provide us information of mixing;

One way of quantifying mixing is to assign each particle a value, say, θ(t, x), which is conserved as
it moves around in the flow.
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Mix-norm: negative Soblev norm

Mix-norm: consider the 1D periodic interval [0, 1]. Define

d(θ, x ,w) =
1

w

∫ x+w/2

x−w/2

θ(y) dy

for all x ,w ∈ [0, 1]. The mix-norm M(θ) is then obtained by averaging d2 over x and w :

M2(θ) =

∫ 1

0

∫ 1

0

d2(θ, x ,w) dx dw

∼ ‖θ‖2
H−1/2 .

For a density field with a Fourier expansion θ(x) =
∑

k θ̂ke
i2π(k·x),

‖θ‖H−1/2 =

(∑
k

1

(1 + ‖k‖2)1/2
|θ̂k|2

)1/2

, ‖k‖2 = k2
1 + · · ·+ k2

d .

∗Mathew-Mezic-Petzold ’05, Lin-Thiffeault-Doering ’10, Thiffeault ’11, etc
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Mix-norm: negative Soblev norm

Assume that Ω = Td = [0, 1]d is a d-dimensional torus and initial distribution has zero mean, that is,∫
Td θ0 dx = 0.

For an s ∈ R, define the homogeneous Sobolev norm of index s by

‖θ‖2
Ḣs :=

∑
k∈Z2,k 6=0

‖k‖2s |θ̂k|2,

where θ̂0 = 0 for mean-zero functions.

Note that for s > 0 the norm puts more weight on higher frequencies. Thus functions that have a smaller
fraction of their Fourier mass in the high frequencies will be “less oscillatory” and have a smaller Ḣs norm.

For s < 0, however, the norm puts less weight on higher frequencies. Thus functions that have a larger
fraction of their Fourier mass in the high frequencies will be “very oscillatory”, and have a smaller Ḣs

norm∗.

∗M. C. Zelati, G. Crippa, G. Iyer, and A. L. Mazzucato, Mixing in incompressible flows: transport, dissipation, and their
interplay, Notices of the AMS, 71(5), 593–604, 2024.
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Mix-norm: negative Soblev norm

Therefore, mixing of θ is equivalent to

‖θ‖Ḣs → 0 as t →∞, for every s < 0 (weak convergence).

In fact, for any s < 0 the quantity ‖θ‖Ḣs can be used as a measure of how “mixed” the distribution is at
time t.

In other words, any Hs -norm for s < 0, which quantifies the weak convergence, can be used as a
mix-norm∗. In particular, we take s = −1.

In a general bounded domain Ω, we employ Sobolev norm for the dual space (H1(Ω))′ of H1(Ω) for
quantifying mixing, which is defined by

‖f ‖(H1(Ω))′ = sup
φ∈H1(Ω)

|
∫

Ω
f φ dx |
‖φ‖H1

, f ∈ (H1(Ω))′.

∗Mathew-Mezic-Petzold ’05, Lin-Thiffeault-Doering ’10, Thiffeault ’11, etc
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Mixing modeled by transport equation

Recall that the total rate of change of the function θ(t, x(t)) as the fluid parcels moving through a flow field can
be described by the Eulerian specification of v , which is given by the transport equation

∂θ

∂t
+ v · ∇θ = 0, θ(0) = θ0, x ∈ Ω,

where Ω ⊂ Rd , d = 2, 3, is an open bounded and connected domain, with a sufficiently regular boundary Γ.

θ: mass concentration or density distribution

v : incompressible velocity field with no-penetration BC, that is,

∇ · v = 0, v · n|Γ = 0.

‖θ(t)‖Lp = ‖θ0‖Lp , p ∈ [1,∞], t > 0.

17



Some known results and open questions

∂θ

∂t
+ v · ∇θ = 0, ∇ · v = 0, x ∈ Ω,

θ(0) = θ0.

What is the relation between v and the decay rate of ‖θ‖H−1 in time?

Alberti-Crippa-Mazzucato ’16: For θ0 ∈ L∞(T2) with
∫
T2 θ0 = 0 and self-similar structure, there exists

v ∈W s,p uniformly in time, for some s ≥ 0 and 1 ≤ p ≤ ∞, such that

(i) if s < 1: perfect mixing in finite time, i.e., there is a time t∗ such that limt→t∗ ‖θ(t, ·)‖H−1 = 0;
(ii) if s = 1: exponential decay;
(iii) In particular, Elgindi-Liss-Mattingly ’23 constructed an alternating piecewise linear shear flow

(Lipschitz and time-periodic) for exponential mixing;
(iv) if s > 1: polynomial decay. However, it is unknown whether ‖θ(t, ·)‖H−1 decays exponentially in time

for some s > 1.

Elgindi-Zlatoš ’18: The answer is affirmative for

1 < s <
1 +
√

5

2
< 2 and p ∈

[
1,

2

2s + 1−
√

5

)
.
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Mixing via flow dynamics

Optimize mixing via active control of fluid dynamics

19



Mixing via flow dynamics

Consider the scalar field modeled by the transport equation

∂θ

∂t
+ v · ∇θ = 0,

which is advected by incompressible fluid flows. Specifically,

mixing via Stokes flows (Ω ∈ Rd , d = 2, 3)

∂v

∂t
− ν∆v +∇p = 0, ∇ · v = 0,

where p is the pressure and ν is the viscosity.

mixing via Navier-Stokes flows (Ω ∈ Rd , d = 2)

∂v

∂t
− ν∆v + v · ∇v +∇p = f (θ), ∇ · v = 0,

where f (θ) stands for the local forces (such as buoyancy, i.e., f (θ) = θ~e, where ~e is a unit vector in the
direction of buoyancy)∗.

∗Hou-Li ’05, Chae ’06, Danchin-Paicu ’11, Lai-Pan-Zhao ’11, Larios-Lunasin-Titi ’13, H.-Kukavica-Zane ’13, ’15, ’16,
H. et. al ’18, etc.
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Example: Boundary control for mixing in Stokes flows

Consider

∂θ

∂t
+ v · ∇θ = 0, x ∈ Ω,

where the velocity field is govern by

∂v

∂t
− ν∆v +∇p = 0, ∇ · v = 0, v · n|Γ = 0.

Motivated by the observation that moving walls accelerate mixing compared to fixed walls with no-slip boundary
condition∗, we consider the Navier slip boundary control for mixing †

v · n|Γ = 0 and (2νn · D(v) · τ + kv · τ)|Γ = g · τ.
n and τ are the outward unit normal and tangential vectors to the boundary Γ

D(v) = 1
2

(∇v + (∇v)T ): deformation tensor

k > 0: coefficient of friction

g : control input function

∗Chakravarthy-Ottino ’96, Thiffeault-Gouillart-Dauchot ’11, etc.
†H., AMO’ 18, 20; H.-Wu, SICON’ 18, JDE’ 19; H.-Rautenburg-Zheng’ 23 JDE; Zheng-H.-Wu, CMAME ’23
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Control for mixing via flow dynamics

Rewrite the flow-transport system into an abstract Cauchy problem
∂tθ = −v · ∇θ,
∂tv = Av + N(v) + F (θ) + Bu,
(θ(0), v(0)) = (θ0, v0).

(M)

A = νP∆: Stokes operator associated with the appropriate boundary conditions, where

P : L2(Ω)→ V 0
n = {v ∈ L2(Ω): div v = 0, v · n|Γ = 0}

is the Leray projector;

N(v) = −P(v · ∇v) (which is set to be zero for Stokes flows)

F (θ) = Pf (θ): local force of interest

u: control input (stirring)

B: control input operator

22



Problem formulation: optimal nonlinear control

Minimize
J(u) =

α

2
‖θ(T )‖2

(H1(Ω))′ +
β

2

∫ T

0

‖θ‖2
(H1(Ω))′ dt +

γ

2
‖u‖2

Uad
, (P),

for a given T > 0, subject to 
∂tθ = −v · ∇θ,
∂tv = Av + N(v) + F (θ) + Bu,
(θ(0), v(0)) = (θ0, v0),

(M)

where α, β ≥ 0 and γ > 0 are the state and control weight parameters, respectively, and Uad stands for the
set of admissible controls.

Introduce η such that

(−∆ + I )η = θ,
∂η

∂n
|Γ = 0.

Let Λ = (−∆ + I )1/2. Then

‖θ‖(H1(Ω))′ = ‖Λ−1θ‖L2(Ω) = ‖Λη‖L2(Ω) = ‖η‖H1(Ω).
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(θ(0), v(0)) = (θ0, v0),

(M)

where α, β ≥ 0 and γ > 0 are the state and control weight parameters, respectively, and Uad stands for the
set of admissible controls.

Introduce η such that

(−∆ + I )η = θ,
∂η

∂n
|Γ = 0.

Let Λ = (−∆ + I )1/2. Then

‖θ‖(H1(Ω))′ = ‖Λ−1θ‖L2(Ω) = ‖Λη‖L2(Ω) = ‖η‖H1(Ω).
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Challenges in analysis and computation

Nonlinearity: The nonlinear coupling due to advection essentially leads to a nonlinear control and
non-convex optimization problem.

Zero diffusivity: Differentiability leads to a high-order regularity required for the velocity field.

Boundary control ∗:

1 Creation of vorticity on the domain boundary;
2 Compatibility conditions may come into play even in the case of non-smooth solutions.

Computation:

1 Mass conservation of scalar transport in incompressible flows;
2 Small-scale structures and large gradients of the scalar field will develop in the mixing process;
3 Optimal open-loop control requires solving the state equations forward in time, coupled with the

adjoint equations backward in time together with a nonlinear optimality condition.

∗H., AMO’ 18, 20; H.-Wu, SICON’ 18, JDE’ 19; Zheng-H.-Wu, CMAME ’23
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Construction of feedback laws based on model predictive control (MPC)

Consider mixing via Stokes flows (N(v) = 0,F (θ) = 0)
∂tθ = −v · ∇θ, θ(0) = θ0,
∂tv = Av + Bu, v(0) = v0,

(−∆ + I )η = θ, ∂η
∂n
|Γ = 0.

Instantaneous control design is closely tied to receding horizon control (RHC) or model predictive control
(MPC) with finite time horizon∗.

One-step MPC: consider a uniform partition of [0,T ] and let h = T
n

for n ∈ N. Using semi-implicit Euler’s
method (I) in time for discretizing the state equations in t gives

θi+1 = θi − hv i+1 · ∇θi ,
v i+1 = v i + hAv i+1 + Bui+1

(−∆ + I )ηi+1 = θi+1, ∂ηi+1

∂n
|Γ = 0,

(3)

where θi = θ(·, ti ), v i = v(·, ti ), and ui = u(·, ti ), i = 0, 1, . . . , n − 1.

Consider now the cost functional for one time step

J(ui+1) =
1

2
‖Ληi+1‖2

L2 +
γ

2
‖ui+1‖2

Uad
, Λ = (−∆ + I )1/2.

∗Hinze-Kunisch ’97, Hinze-Volkwein ’02, etc.
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Construction of feedback laws (cont’d)

Let (ρi+1,w i+1) be the adjoint state of (θi+1, v i+1). Applying the Euler-Lagrange method leads to

ρi+1 = ηi+1 = (−∆ + I )−1θi+1, (I − hA)w i+1 = hP(θi∇ρi+1), (4)

and the optimality condition

γui+1 + B∗w i+1 = 0. (5)

The optimality system (3)–(5) admits a unique solution due to the quadratic cost functional and the
uniqueness of (3).

Compute (ui+1, v i+1, θi+1) recursively by setting ui
0 = 0, which turns out to be the semi-implict time

discretization of the closed-loop system
∂tθ = −v · ∇θ, θ(0) = θ0,
∂tv = Av + Bu, v(0) = v0,
u = −γ−1hBB∗(I − hA)−1P(θ∇η) (sub-optimal).
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Well-posedness and stability of the closed-loop system

The closed-loop system reads (H.-Rautenberg-Zheng, JDE ’23)
∂tθ = −v · ∇θ, θ(0) = θ0,
∂tv = Av + Bu, v(0) = v0,
u = −γ−1hBB∗(I − hA)−1P(θ∇η) (sub-optimal),

where η = (I −∆)−1θ, γ and h are the fixed parameters.

Let B = PI (internal control). Then

∂tv = Av − γ−1h(I − hA)−1P(θ∇η).

Well-posedness: For (θ0, v0) ∈ (L∞(Ω) ∩ H1(Ω))× V 2
n (Ω), there exists a unique solution (θ, v) satisfying

(θ, v) ∈ L∞(0,T ; L∞(Ω) ∩ H1(Ω))× L∞(0,T ;V 2
n (Ω)) ∩ L2(0,T ;V 3

n (Ω))

for any T > 0.
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Well-posedness and stability (cont’d)

Applying energy estimates yields

d

dt
Total Energy =

d

dt
‖θ‖2

(H1(Ω))′ +
γ

δ

d

dt
‖v‖2

H1(Ω) ≤ −C‖v‖
2
H1(Ω) < 0.

Long-time behavior:

1 ‖v‖L2 , ‖∇v‖L2 , ‖Av‖L2 , ‖∂tv‖L2 → 0 as t → +∞;
2 ‖θ‖(H1(Ω))′ → c0 as t →∞, and c0 < C(η0, v0);
3 ‖u‖L2 → 0 as t → +∞.

Polynomial decay:

Using C0-semigroup theory and nonlinear analysis, we can show that there exist constants a, b, c > 0
such that

‖v‖L2 = O
( 1

ta

)
, ‖θ − θ̄‖(H1(Ω))′ = O

( 1

tb

)
, and ‖u‖L2 = O

( 1

tc

)
, t →∞,

where θ̄ = 1
|Ω|

∫
Ω
θ dx , if we make ansatz on the decay rates of high-order norms of v .
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Numerical implementation of the closed-loop system

Numerical schemes (H.-Wu-Zheng, CMAME ’23; H.-Rautenberg-Zheng, JDE ’23)

Taylor-Hood finite element algorithm together with projection method and BDF2 time discretization for
solving the Stokes equations

Runge-Kutta Discontinuous Galerkin (RKDG) scheme with 3rd order accurate in time and piecewise
quadratic in space for solving the transport equation
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Numerical simulations: semi-implicit Euler’s method I

θ0 = tanh(y/0.1). Evolution of θ for ∈ [0, 2], h = 0.1, γ =1e-6
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Mixing decay rate in time
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Fig. 14: Evolution of (H1(Ω))′-norm of the closed-loop solution θ over time
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Semi-implicit Euler’s method I with different h

Density snapshots of semi-implicit Euler method I. First row: h = 0.01. Second row: h = 0.1. Third row: h = 1.
All the time frames are at t = 1, 3, 5, 7, 10.
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Different discretization scheme

Using a different semi-implicit Euler method (II) in time for discretizing the state equations in t gives
θi+1 = θi − hv i+1 · ∇θi ,
v i+1 = v i + hAv i + Bui+1

(−∆ + I )ηi+1 = θi+1, ∂ηi+1

∂n
|Γ = 0.

(6)

Following similar procedures, one can show that (6) is the semi-implicit time discretization of the closed-loop
system 

∂tθ = −v · ∇θ, θ(0) = θ0,
∂tv = Av + Bu, v(0) = v0,
u = −γ−1hBB∗P(θ∇η).

(7)
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Semi-implicit Euler’s method II with different h

Density snapshots of semi-implicit Euler method II. First row: h = 0.01. Second row: h = 0.05. Third row:
h = 0.1. All the time frames are at t = 1, 3, 5, 7, 10.
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Long-time behavior of the closed-loop system

[a] [b]

[c] [d]

[a]-[d]: Evolution of norms in time.
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Questions

Determine the velocity field that achieves mixing with no flow dynamics involved;

Approximate the desired velocity field via active control of the flow dynamics.

Consider 
∂θ
∂t

+ v · ∇θ = 0, θ(0) = θ0,
∇ · v = 0, v · n|Γ = 0,

(−∆ + I )η = θ, ∂η
∂n
|Γ = 0.

Let θ0 ∈ L∞(T2) with
∫
T2 θ0 = 0. Assume v ∈W s,p(Ω), uniformly in time, for some s ≥ 0 and 1 ≤ p ≤ ∞.

(i) If s < 1: for any 0 < t∗ <∞, can we construct a feedback law

v = F (θ, η),

such that limt→t∗ ‖θ(t, ·)‖H−1 = 0, i.e., perfect mixing in finite time can be achived?
(ii) If s ≥ 1: can we construct a feedback law such that exponential mixing is possible, i.e., there exist

constants M, δ > 0 such that
‖θ‖(H1(Ω))′ ≤ Me−δt , t ≥ 0 ?
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Thank you for your attention!
Questions?
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