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Introduction
The Ricci curvature is unquestionably a subject of main importance in geometry. Roughly speaking, it
measures how shape is deformed along geodesics. And therefore, it is of great significance in physics. Take
for example The lazy gas experiment, in page 459 of [?], which relates the concavity of the entropy of a
gas being transported in a given space and the curvature of this space; here, if the density of the gas is
given by the function ρ, its entropy is −

∫
ρ log ρ.

Let M be a Riemannian manifold. In this setting, the opposite of entropy is the well known
H-Boltzmann functional, by

H(µ) =

∫
M
ρ log ρd vol, µ = ρ vol .

And in fact, later results in Optimal Transport Theory have shown that convexity properties of this
functional guarantee necessary and sufficient conditions to lower bounds on the Ricci curvature of M .
Based on that, we introduce a new H-functional on the total space of an isometric Lie group action to
investigate the Ricci curvatures of quotient spaces of Lie groups isometric actions.
More specifically we prove the following theorem.
Theorem 1. Let G↷M be an isometric group action with M being a complete Riemannian manifold
equipped with geodesic distance d and dimM = N . Therefore, for any K ∈ R, H is locally
KΛN -displacement convex if, and only if, the Ricci curvatures of the quotient space M/G on the principal
strata are bounded below by K.

Wasserstein Spaces and Displacement Convexit
First of all we must introduce the domain of our soon to be H-operator.

Definition. Let (X, d) be a polish space. We define the Wasserstein distance of order 2 as
W2 : P(X)× P(X) → R ∪ {±∞} by

W2(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
X×X

d(x1, x2)
2dπ(x1, x2)

)1/2

.

Definition. The Wasserstein Space of order 2 is, fixed x0 ∈ X ,

P2(X) :=

{
µ ∈ P(X) : W2(µ, δx0) =

∫
X×X

d(x, x0)
2dµ(x) < +∞

}
.

Let Γ be the set of constant speed geodesics on M . The geodesics on P2(M) are of the form µt := (et)∗Π;
with Π being a probability measure on Γ and et being the evaluation maps Γ ∋ γ 7→ γt ∈M .
These spaces are geodesically connected.

Definition. Let (M, g) be a Riemannian manifold and x 7→ Λ(x, v) a continuous function with range on
the quadratic forms on TM . A function F : Pac2 (M) → R ∪ {+∞} is said to be Λ-displacement
convex if for any constant speed minimizing geodesic (µt)0≤t≤1, with an associated Hamilton-Jacobi
equation, for any t ∈ [0, 1],

F (µt) ≤ (1− t)F (µ0) + tF (µ1)−
∫ 1

0
Λ(µs, ∇̃ψs)G(s, t)ds; (1)

It is assumed that Λ(µs, ∇̃ψs)G(s, t) is bounded below by an integrable function of s ∈ [0, 1].

Disintegration of Absolutely Continuous Measures
As the natural projection π :M →M/G is continuous it is a Borel map. Then we may apply the following
theorem on disintegration of measures, whose proof can be found at [?].

Theorem. Let X and Y be locally compact and separable metric spaces and π : X → Y be a Borel map.
Fix µ ∈ M+(X) – where M+(X) is the set of positive and finite Radon measures on X – and define
ν = π∗µ ∈ M+(Y ). Then, there are measures µy ∈ M+(X) such that

▶ y 7→ µy is a Borel map and µy is a probability on X for ν-almost every y ∈ Y ;

▶ µ = ν ⊗ µy; that is, µ(A) =
∫
Y µy(A)dν(y) for every measurable set A ⊂ X ;

▶ µy is concentrated on π−1(y) for ν-almost every y ∈ Y .

Fixed a normal slice Σ on a principal point of the action and Z a principal isotropy group we have that the
volume measure is locally vol = volG/Z × volΣ.

For each x ∈ Σ, define volxρ := ρ volG/Z ×δx and µx =
volxρ

volxρ

(
G
Z×{x}

). It is an easy task to prove that µx

gives a disintegration of µ with respect to the principal orbits of the action. It can be seen as a measure on
G/Z that is absolutely continuous to vol0 := volx for any x ∈ Σ.

Example: S1 acting on R2

Consider the action of the group S1 = {eiθ : θ ∈ [0, 2π]} on the complex plane C given by the complex
product, i.e., eiθ acts on z ∈ C via eiθz. Writing the complex number in polar form, z = reiα with
r ∈ [0,+∞[ and α ∈ [0, 2π], we see that eiθ · reiα = rei(θ+α). Thus, this action is given as
(cos θ, sin θ) · (r cosα, r sinα) = (r cos(θ + α), r sin(θ + α)). The orbit of a point (x, y) ∈ C is the circle
S1 · (x, y) = {(r cos θ, r sin θ) : r = |(x, y)|, θ ∈ [0, 1]}, so the action does not change the radius of the
initial point. This proves that the action is indeed under isometries and that the orbits are concentric circles
centred at the origin, except for the orbit of the point 0, that is degenerate: {0}. Furthermore, each orbit
intersects the interval [0,+∞[ exactly once. We may identify this segment of non-negative real number
with C/S1. By understanding the geometry of [0,+∞[ and of the orbits, one understands the geometry of
the whole complex plane.
Consider π : R2 → [0,+∞[ the projection of this action. Then,

π(r cos θ, r sin θ) = r.

The volume form of C can be written as

d vol = rdr ∧ dθ.
Thus,

vol(A) =

∫
A
rdr ∧ dθ.

This measure actually induces a measure on the quotient space [0,+∞[ by the pushfoward measure π∗ vol,
which is given by

π∗ vol(U) = vol(S1 · U) =
∫
S1·U

rdr ∧ dθ.

We may also “split” vol into conditional measures volr whose support is contained in the circle of radius r
that are defined via

d(volr) = d(δr) ∧ dθ.
Those measures can be “glued together” to “build” vol back. Indeed,∫

R+

volr(A)d(π∗ vol)(r) =
∫
R+

(∫
A
d(δr × θ)(z, θ)

)
d(π∗ vol)(r)

=

∫
R+

(∫
R2
χA(z, θ)d(δr × θ)(z, θ)

)
d(π∗ vol)(r)

=

∫
R+

(∫ 1

0
χA(r, θ)dθ(θ)

)
d(π∗ vol)(r)

=

∫
R2

(∫ 1

0
χA(r, θ)dθ(θ)

)
d vol(r, θ̃)

=

∫
R+

∫ 1

0

∫ 1

0
χA(r, θ)rdθdrdθ̃

=

∫
R+

∫ 1

0
χA(r, θ)rdrdθ = vol(A).

The H-Functional

In order to make sense to the statement of the Theorem 1, we finally define the H-function on the space
Pac2 (G/Z) via

H(µ) := −
∫
G/Z

N(ρ1−1/N − ρ)d vol0, µ = ρ vol0;

with N = dimM .
And the quadratic norm:

ΛN (µ, v) :=

∫
G/Z

|v(z)|2ρ1−1/n(z)d vol0(z), µ = ρ vol0 .
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