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Motivation
Describe reactive transport of nutrients, drugs, respiratory gases
or waste products through deformable tissues such as lung tissue,
heart tissue or vessel walls.
• Cellular structure leads to multi-scale

character of biological tissue
• Diseases like Cancer, Covid-19 or

Sepsis lead to impairment of cellular
reaction networks (e.g. energy
metabolism)

• Lung-on-a-chip: a microdevice illustrates
effect of cyclic stretching on transport
processes in deforming bio-engineered
lung tissue

Figure: Lung-On-A-Chip, [1].

Multi-Scale Modeling
• System of linear elasticity and reactive transport in mixed

Eulerian/Lagrangian framework on the periodic microscopic
domain:

ε2∂ttuε − ∇ · (Ae(uε)) = fe in (0, T ) × Ωs
ε,

∂tĉε + ∇̂ ·
(

v̂εĉε − D̂m∇̂ĉε

)
= fm

d (ĉε) in ∪t∈(0,T ) {t} × Ωs
ε(t),

with unknown deformation Sε:

Sε(t, x) := x + uε(t, x),
and current deformed domain Ωs

ε(t):
Ωs

ε(t) := {x̂ ∈ Rn | x̂ = Sε(t, x), x ∈ Ωs
ε}.

Sε(t, ·)

Ωs
εΩs
ε

Ωs
ε(t)Ωs
ε(t)

• Pull-back of the transport problem using the deformation Sε to
obtain a microscopic model in unified Lagrangian framework
with

cε(t, x) := ĉε(t, Sε(t, x)).
• Upscale transformed problem using the method of two-scale

asymptotic expansions to obtain an effective micro-macro
model in the homogeneous domain Ω:

−∇ · (A∗e(u0)) = |Y s|fe in (0, T ) × Ω,

∂t (J∗c0) − ∇ · (D∗∇c0) = J∗fd(c0) in (0, T ) × Ω.

• The system is nonlinearly coupled via effective coefficients
A∗, J∗ and D∗, which are obtained by means of auxiliary cell
problems on the fixed reference cell Y s, e.g.

−∇y · [D0(t, x, y) (ei + ∇yηi(t, x, y))] = 0 in (0, T ) × Ω × Y s,

−D0(t, x, y) (ei + ∇yηi(t, x, y)) · nΓ = 0 on (0, T ) × Ω × Γ,

ηi is Y s-periodic in y,
∫

Y s

ηidy = 0,

for i = 1, ..., n.

Figure: η1(0, 0, ·) Figure: η2(0, 0, ·)

An Efficient Computational Framework
start

compute elasticity
cell solutions χij

compute effective
elasticity tensor A∗

k← 0,
tk ← 0

tk ≤ T?

yes

compute current
macroscopic displacement

(parallel) for all quadrature points

compute diffusion cell
problem coefficients D0(t, x, y)

compute diffusion
cell solutions ηi(t, x, y)

compute effective diffusion
coefficients J∗(t, x), D∗(t, x)

end

compute current
macroscopic concentration

k← k + 1,
tk ← k∆t

no

end

Challenge: large number of diffusion
cell problems (see bar graph)
→ Use feed-forward neural network

to compute effective coefficients
700 times faster

• software library: deal.II
• spatial discretization:

Lagrangian FE
• temporal discretization:

Crank-Nicolson method
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Numerical Justification of the Effective Model

Is the effective micro-macro model a good approximation of the
microscopic model?
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Simulation Results

Time-evolution of concentration while domain is under cyclic elas-
tic deformation, mimicking e.g. the breathing movement:
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