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Introduction
In this paper, we deals with partial differential equations (PDEs) and the systems of PDEs and algebraic
equations, which are commonly referred to as partial differential-algebraic equations (PDAEs), that can be
represented as an implicit differential equation of the form

d

dt
[Ax] +Bx = f (t, x), t > 0, (1)

where A and B are closed linear operators from X into Y with domains DA and DB respectively,
D = DA ∩DB ̸= {0} is a lineal (linear manifold), X and Y are Banach spaces, DA and DB are dense in
X (i.e., DA = X , DB = X), and f ∈ C(R+ ×D, Y ), R+ = [0,∞). The operator A is degenerate and
the operator B can also be degenerate. Equation (1) with the degenerate operator A is called a degenerate
differential equation (degenerate DEs), an abstract evolution equation or an abstract differential-algebraic
equation (abstract DAE). A significant feature of these equations is that any type of a PDE can be
represented as an abstract evolution equation in appropriate infinite-dimensional spaces, possibly, with a
complementary boundary condition, and it is often much easier to study the corresponding abstract
evolution equation than the original PDE.
We present conditions of dissipativity, stability and asymptotic stability for higher-index abstract DAEs. It is
known that, from a practical point of view, stability is the most important property of an engineering
system since it guarantees that the system can work properly and will not be destroyed. In control theory,
the dissipativity and complete stability (asymptotic stability in the large of an equilibrium state) of a
dynamical system (control system with zero input) are used to obtain conditions for the stability of the
associated control system and to analyze the robustness of the control system with respect to disturbance.
DAEs arise from the modelling of various systems and processes in control problems, gas industry,
mechanics, radio engineering, chemical kinetics, economics, ecology and biology.

Direct decompositions of spaces and the associated projectors
We assume that the operator pencil P (λ) = λA +B : D → Y (λ ∈ C is a parameter) is regular, i.e., the
set of its regular points ϱ = ϱ(A,B) = {λ ∈ C | ∃ (λA +B)−1 ∈ L(Y,D)} is not empty.

Definition. Let the following conditions hold:
(a) The pencil P (λ) = λA +B is regular for all λ from some neighborhood of the infinity.
(b) The point λ = ∞ is a pole of the resolvent R(λ) = P−1(λ) = (λA +B)−1 of order r; this is

equivalent to the fact that the resolvent R̂(µ) = (A + µB)−1 has a pole of order ν = r + 1 at µ = 0.
Then P (λ) is called a regular pencil of index ν (ν ∈ N).
If there exists A−1 ∈ L(Y,X) (or µ = 0 is a regular point of P̂ (µ)) and DB ⊇ DA, then P (λ) is a regular
pencil of index 0.

Let P (λ) be a regular pencil of index ν. Then there exists the pair of mutually complementary projectors
Pk : D → Dk (P1DA = P1D), k = 1, 2, and the pair of mutually complementary projectors Qk : Y → Yk,
k = 1, 2, which generate the decompositions of D and Y into the direct sums

D = D1+̇D2, Y = Y1+̇Y2, Dk = PkD, Yk = QkY, k = 1, 2, (2)

such that the pairs {Dk, Yk} are invariant under the operators A, B, i.e., ADk ⊂ Yk and BDk ⊂ Yk,
k = 1, 2 (see, e.g., [8]). The restricted operators Ak := A

∣∣
Dk

: Dk → Yk, Bk := B
∣∣
Dk

: Dk → Yk,

k = 1, 2, are such that there exist A−1
1 ∈ L(Y1, D1) and B−1

2 ∈ L(Y2, D2). The projectors can be
constructively determined by using contour integration [8] or residues [6].
If P (λ) has index 1, the projectors mentioned above allow one to reduce equation (1) to a system of an explicit ODE and an
algebraic equation. However, for the pencil of index higher than 1, additional decompositions of the lineal D2, the subspace Y2

and the projectors P2, Q2 are required. Below we provide another method to construct the projectors.

In what follows, we suppose that DB ⊇ DA, then D = DA. Assume that dim kerA = n and denote by
{φ11, ..., φ

1
n} a basis of kerA.

There exists a canonical system {φji}
j=1,...,mi
i=1,...,n (1 ≤ mi ≤ ν) of eigenvectors and adjoined vectors of the

pencil P̂ (µ) = A+ µB that correspond to the eigenvalue µ = 0, for which the vectors satisfy the equalities

Aφ1i = 0, Aφ
j
i = −Bφ

j−1
i , i = 1, ..., n, j = 2, ...,mi, mi ≤ ν (ν = r + 1), max

i=1,...,n
{mi} = ν,

where ν is the index of P (λ) [7]. The vectors {φji}
j=1,...,mi
i=1,...,n and {Bφ

j
i}

j=1,...,mi
i=1,...,n form the bases of D2

and Y2, respectively. The number mi − 1 is called the order of the adjoined vector φ
mi
i , and mi is called

the multiplicity of the eigenvector φ1i . If the eigenvector φ
1
i does not have adjoined vectors (in this case,

⟨Bφ1i , q
1
i ⟩ = 1, q1i ∈ kerA∗) then its multiplicity mi = 1. The projectors Pk, Qk can be obtained as

P2x =

n∑
i=1

mi∑
j=1

⟨x,B∗qji ⟩φ
j
i , Q2y =

n∑
i=1

mi∑
j=1

⟨y, qji ⟩Bφ
j
i , P1 = IX − P2, Q1 = IY −Q2, (3)

where x ∈ X , y ∈ Y and the bounded linear functionals q
j
i ∈ Y ∗ are chosen such that

A∗qmi
i = 0, A∗qji = −B∗qj+1i , i = 1, ..., n, j = 1, ...,mi − 1,

and ⟨Bφ
j
i , q

l
k⟩ = δikδjl. The projectors (3) generate the direct decompositions X = X1+̇X2, Xk = PkX ,

D = D1+̇D2, Dk = PkD (D2 = X2, D1 = X1 ∩D), Y = Y1+̇Y2, Yk = QkY , k = 1, 2, where the direct
decompositions of D and Y are the same as (2).
Define D20 := kerA = span{φ1i}i=1,...,n, by D2s the linear span of the adjoined vectors of order s

(s = 1, ..., ν − 1), by D
j
20 the linear span of the eigenvectors of multiplicity j (j = 1, ..., ν), by D

j
2s the

linear span of the adjoined vectors of order s to which the eigenvectors of multiplicity j correspond

(j = s + 1, ..., ν), and Y2s := BD2s, Y
j
2s := BD

j
2s, j = s + 1, ..., ν, s = 0, ..., ν − 1. Then

D2 = D20+̇...+̇D2(ν−1), Y2 = Y20+̇...+̇Y2(ν−1), D2s = Ds+1
2s +̇...+̇Dν

2s and Y2s = Y s+1
2s +̇...+̇Y ν

2s,

s = 0, ..., ν − 1. Introduce the projectors P2s : X → D2s, Q2s : Y → Y2s, P
(j)
2s : X → D

j
2s,

Q
(l)
2s : Y → Y l

2s. Denote D2Σ = D2 \ kerA = span{φji , j = 2, ...,mi, i ∈ {1, ..., n} : mi ̸= 1},
Y2∗ = span{Bφ

mi
i }i=1,...,n, Y2Σ = Y2 \ Y2∗ = span{Bφ

j
i , j = 1, ...,mi − 1, i ∈ {1, ..., n} : mi ̸= 1}.

Then
D2 = D20+̇D2Σ, Y2 = Y2∗+̇Y2Σ, (4)

A20 = A
∣∣
D20

= 0 and A2Σ := A
∣∣
D2Σ

: D2Σ → Y2Σ has the inverse A−1
2Σ ∈ L(Y2Σ, D2Σ). Here it is

supposed that ν ≥ 2. If ν = 1, then D2 = kerA and Y2 = BD2. The operators A1 = A
∣∣
D1

, B2 = B
∣∣
D2

are invertible, as mentioned above. The direct decompositions (4) generate the pairs P20, P2Σ and Q2∗,
Q2Σ of the mutually complementary projectors P20 : D → D20, P2Σ : D → D2Σ and Q2∗ : Y → Y2∗,
Q2Σ : Y → Y2Σ. The above projectors can be obtained from (3) as appropriate partial sums.

Main results
Consider the case when P (λ) is a regular pencil of index 2. In this case, D2 = D20+̇D2Σ,
D20 = D1

20 +̇D2
20, D2Σ = D21, and Y2 = Y2∗+̇Y2Σ = Y20+̇Y21, Y2∗ = Y 1

20 +̇Y21, Y2Σ = Y 2
20,

Y20 = Y 1
20 +̇Y 2

20. There exists A
−1
2Σ = A−1

21 ∈ L(Y 2
20, D21), where A2Σ = A21 = A

∣∣
D2Σ=D21

. Any element

x ∈ D can be uniquely represented in the form

x = x1 + x2 = x1 + x20 + x21, x20 = x
(1)
20 + x

(2)
20 , xi = Pix, x2i = P2ix, x

(i)
20 = P

(i)
20 x, i = 1, 2.

Using the projectors Q1, Q
(2)
20 , Q

(1)
20 , Q21, we reduce the DAE (1) to the equivalent system

A1ẋ1 +B1x1 = Q1f (t, x), (5)

A21ẋ21 +B2x
(2)
20 = Q

(2)
20 f (t, x), (6)

B2x
(1)
20 = Q

(1)
20 f (t, x), (7)

B2x21 = Q21f (t, x). (8)

The derivative V̇(5),(6)(t, x1, x21) of the a scalar function V ∈ C1(R+ ×D1 ×D21,R) along the

trajectories of the system (5), (6) has the form

V̇(5),(6)(t, x1, x21) = ∂tV (t, x1, x21) + ∂(x1,x21)V (t, x1, x21) · Π(t, x) = ∂tV (t, x1, x21) +

+ ∂x1V (t, x1, x21)A
−1
1 [Q1f (t, x)−B1x1] + ∂x21V (t, x1, x21)A

−1
21 [Q

(2)
20 f (t, x)−B2x

(2)
20 ], (9)

Π(t, x) =

(
A−1
1 [Q1f (t, x)−B1x1]

A−1
21 [Q

(2)
20 f (t, x)−B2x

(2)
20 ]

)
.

We will study the initial value problem (IVP) for the DAE (1) with the initial condition

x(0) = x0. (10)

Theorem 1. Let f ∈ C(R+ ×D, Y ), DB ⊇ DA, dim kerA = n < ∞, and λA +B be a regular pencil
of index 2. Assume that there exists an open set M1,21 ⊆ D1+̇D21 and a set M20 ⊆ D20 such that the
following holds:

1. For any fixed t ∈ R+, (x1 + x21) ∈ M1,21 there exists a unique x20 ∈ M20 such that

(t, x) ∈ L0 = {(t, x) ∈ R+ ×X | (t, x) satisfies equations (7), (8)}.

2. A function f (t, x) has the continuous (strong) derivative ∂xf on R+ ×D. For any fixed t ∈ R+,
x ∈ D such that (x1 + x21) ∈ M1,21, x20 ∈ M20 and (t, x) ∈ L0, the operator

Wt,x :=
[(
Q
(1)
20 +Q21

)
∂xf (t, x)P20 −BP

(1)
20

] ∣∣∣
D20

: D20 → Y 1
20+̇Y21 (11)

has the inverse W−1
t,x ∈ L(Y 1

20+̇Y21, D20).

3. If M1,21 ̸= (P1 + P21)X , then the following holds.
The component (x1 + x21)(t) = (P1 + P21)x(t) of each solution x(t) with the initial point
(t0, x0) ∈ L0, for which (P1 + P21)x0 ∈ M1,21, P20x0 ∈ M20, can never leave M1,21 (i.e., it remains
in M1,21 for all t from the maximal interval of existence of the solution).

4. If M1,21 is unbounded, then the following holds.

There exists a number R > 0 (R can be sufficiently large), a function V ∈ C1
(
R+ ×MR,R

)
positive

on R+ ×MR, where MR = {(x1, x21) | x1 + x21 ∈ M1,21, ∥x1 + x21∥ > R}, and a function
χ ∈ C(R+ × (0,∞),R) such that:

4.1 lim
∥(x1,x21)∥→+∞

V (t, x1, x21) = +∞ uniformly in t on each finite interval [a, b) ⊂ R+;

4.2 for each t ∈ R+, (x1, x21) ∈ MR, x20 ∈ M20 such that (t, x) ∈ L0, the derivative (9) of the function V along the
trajectories of equations (5), (6) satisfies the inequality V̇(5),(6)(t, x1, x21) ≤ χ

(
t, V (t, x1, x21))

)
;

4.3 the differential inequality v̇ ≤ χ(t, v) (t ∈ R+) does not have positive solutions with finite escape time.

Then there exists a unique global (i.e., on [t0,∞)) solution of IVP (1), (10) for each initial point
(t0, x0) ∈ L0 for which (P1 + P21)x0 ∈ M1,21 and P20x0 ∈ M20.

Corollary. If in the conditions of Theorem 1 the sets M1,21 and M20 are bounded, then equation (1) is
uniformly dissipative (uniformly ultimately bounded) for the initial points (t0, x0) ∈ L0 for which
(P1 + P21)x0 ∈ M1,21 and P20x0 ∈ M20.

Discussions
The local solvability of an abstract DAE of the form (1) for the nonlinear function of a special form has
been studied in [1].
In [2–5], the theorems and methods for the study of the global solvability, Lyapunov stability and instability,
asymptotic stability, complete stability (asymptotic stability in the large) and the dissipativity of semilinear
DAEs with the regular pencil of index not higher than 1 (or the singular pencil whose regular block is a
regular pencil of index not higher than 1) in finite-dimensional spaces have been obtained. In the present
work, we extend these results to the higher-index abstract DAEs in Banach spaces.
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