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Introduction

Lattices are subsets of Rn given by all the Z-linear combinations of linearly independent vectors v1, . . .,
vk ∈ Rn (k ≤ n is the rank of the lattice). These geometric objects have been studied for a long time
because they are important in the search for solutions to classical problems in Mathematics, such as the
Sphere Packing Problem [1]. In recent decades, lattices have shown to be very useful in communication
theory and cryptography, since they have been fundamental in data transmission over Gaussian channels
and Rayleigh fading channels [2, 3], and in proposing new cryptographic problems presumably resistant to
quantum attacks [4].

The lattice Z2, the hexagonal lattice in R2 and the face-centered cubic (FCC) lattice, respectively.

In this work, we present introductory aspects of lattices and some results on algebraic constructions of the
so called well-rounded lattices. Also, we introduce lattice-based cryptography.

Lattices and algebraic lattices

A set Λ ⊂ Rn is called lattice if it is a discrete
additive subgroup of Rn. Such set has a basis B
with k ≤ n elements. If k = n, we say that Λ is a
full-rank lattice. The matrix M whose columns are
the vectors of B is called a generator matrix of Λ.
The matrix G = MTM is the Gram matrix of G.
The determinant of Λ is defined to be the
determinant of G and is denoted by det(Λ). The
volume of Λ is given by

√
det(Λ).

In the figure on the right, the black dots represents a
portion of a full lattice in R2. The area of the
parallelogram in the figure is the volume of the lattice.

Let K be a number field of degree n = r1 + 2r2, where r1 is the number of real monomorphisms and 2r2 is
the number of imaginary monomorphisms from K to C. Let σ1, . . . , σr1 be the real monomorphisms and
σr1+1, . . . , σr1+2r2 be the imaginary monomorphisms, where σr1+r2+i = σr1+i for all i = 1, 2, . . . , r2.
Consider OK the ring of integers of K. The function σ : K −→ Rn given by

σ(x) = (σ1(x), . . . , σr1(x),ℜ(σr1+1(x)),ℑ(σr1+1(x)), . . . ,ℜ(σr1+r2(x)),ℑ(σr1+r2(x))) (1)

is called the Minkowski embedding of K, where ℜ and ℑ denote, respectively, the real and the imaginary
parts of a complex number. If {x1, x2, . . . , xn} is a Z-basis of a free Z-module M of rank n in OK, then
σ(M) is a full-rank lattice in Rn with basis {σ(x1), . . . , σ(xn)}. This lattice is called an algebraic lattice.
In particular, M can be taken to be OK or an ideal of it. In the latter case, we can call Λ an ideal lattice.

Sphere packing

The Sphere Packing Problem in dimension n involves determining how densely a large number of
identical spheres can be packed together in Rn. Spheres whose centers are points of a lattice and that the
intersection of any two intersecting spheres is just one point provide a lattice packing. The hexagonal Λ2
and FCC lattices are known to be the solutions to the Sphere Packing Problem in dimensions 2 and 3,
respectively [1]. Recently, Marina Viazovska was awarded the Fields Medal for confirming that E8 and
Leech lattices solve the Sphere Packing Problem in dimensions 8 and 24, respectively [6].
In some applications in coding theory, it is recommended to use dense lattices. In order to measure the
density of a full-rank lattice Λ of rank n, we usually calculate its center density δ(Λ) = ρn/vol(Λ), where
ρ is the packing radius of Λ. The higher the value of δ(Λ), the denser the packing provided by Λ.
Considering K a totally real or a totally imaginary number field of degree n, I a non-zero ideal of OK, dK
the discriminant K, N(I) the norm of the ideal I and t = min{TrK/Q(xx) : x ∈ I, x ̸= 0}, then

δ(σ(I)) =
tn/2

(2|dK|)n/2N(I)
. (2)

Dense lattices can be obtained algebrically as image of Z-modules in ring of integers of algebraic number
fields in several dimensions (e.g., in dimensions 2, 3, 4, 5, 6, 7, 8, 12, and 24 [8]). A possibility of study in
this area consists of finding new constructions of dense lattices known in other dimensions or even find
lattices even denser than those currently known in several dimensions.

Well-rounded lattices

Let Λ ⊆ Rn be a full-rank lattice. The minimum norm λ1 of Λ is defined to be the minimum of ∥v∥, for
all v ∈ Λ \ {0}, where ∥.∥ denotes the usual Euclidean norm. The packing radius of Λ is given by λ1/2.
The set of minimum vectors of Λ is so given by S(Λ) := {v ∈ Λ : ∥v∥ = λ1}. Recently, more attention
has been paid to well-rounded lattices, which are those Λ such that S(Λ) generates Rn. This means
that Λ is well-rounded if S(Λ) contains n linearly independent vectors. In dimension 2, it is a well-known
result that a full-rank lattice Λ is well-rounded if and only if the number of minimum vectors is 4 or 6 [5].

Example of a non well-rounded lattice
B = {(1, 0), (cos θ, sin θ)}
0 < θ < π/3 (θ = π/6)
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Example of a well-rounded lattice
B = {(1, 0), (cos θ, sin θ)}

π/3 ≤ θ ≤ π/2 (θ = 5π/12)
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In [5] it is shown that, if K is a Galois number field, the lattice σ(OK) is well-rounded if and only if K is a
cyclotomic field. Despite this, we are interested in investigate whether it is possible to create well-rounded
algebraic lattices coming from Z-modules inside non-cyclotomic number fields.
Let p > 2 be a prime number and m > 0 be an integer number such that m ≡ 1 (mod p) and√
q/(p + 1) ≤ m ≤

√
q(p + 1). Let K be a number field of degree p, θ be a generator of Gal(K/Q) and

q be a prime number such that q ≡ 1 (mod p). In [7], we show that σ(Mm) is a full-rank well-rounded
lattice in Rp, where Mm is the Z-module

Mm =


p−1∑
i=0

aiθ
i
(
TrQ(ζq)/K(ζq)

)
∈ OK :

p−1∑
i=0

ai ≡ 0 (mod m)

 .

Consequently, there exist infinitely many non-equivalent well-rounded algebraic lattices in Rp, for each
prime number p > 2. This opens up new questions and new possibilities for study: given any (Galois)
number field, is there always a well-rounded algebraic lattice obtained as an image of some Z-module
within its ring of integers? How can we obtain well-rounded lattices using algebraic or other methods?

Lattice-based cryptography

In 1994, the mathematician Peter Shor showed that currently used cryptographic algorithms, as RSA or
those based on elliptic curves, will not resist quantum computers. Since then, much effort has been made
to obtain cryptographic systems resistant to quantum attacks. Lattice-based cryptosystems are a great
promise for post-quantum cryptography, as was seen in the North American agency NIST’s competition for
the standardization of post-quantum cryptography finished in 2022. Lattice-based cryptosystems are those
based on the presumed hardness of lattice problems, as the Shortest Vector Problem (SVP), the Closest
Vector Problem (CVP), the Bounded Distance Decoding Problem (BDD), among others.

Respectively, ilustrations of the SVP and the CVP problems. Figure by Sebastian Schmittner, taken from

https://en.wikipedia.org/wiki/Lattice_problem

There are several proposed methods to obtain public key encryption schemes based on the hardness of
lattice problems. Among them, we can highlight the cryptosystems GGH (1997), NTRU (1996),
Ajtai-Dwork (1997) and, mainly, the Learning With Errors (LWE, 2005) and their structured (algebraic)
versions (Ring-LWE, Module-LWE and Twisted-Ring-LWE). For instance, the security proof of the LWE
problem is based on the hardness of the approximate SVP problem. Recently, the Lattice Isomorphism
Problem (LIP) has been proposed for lattice-based cryptography - it was used to construct the scheme
Hawk, currently in evaluation for digital post-quantum signature. Two lattices L1 and L2 are said
isomorphic if L1 = O · L2 for some orthogonal transformation O. So, the search version of LIP consists of
finding a linear isometry mapping two lattices L1 and L2 which are known to be isomorphic. Recently, the
Module-LIP, an algebraic version of LIP, was defined and studied in [9]. In [9], an algorithm solving
Module-LIP was proposed for modules of rank 2 over totally real number fields. A research line on this
topic consists to investigate the Module-LIP for other classes of number fields. Furthermore, an open
question related to this is the following: can the algebraic structure of Module-LIP be used to provide more
efficient algorithms for solving it than those known for solving LIP?
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