

SSPINNpose: Self-supervised learning of biomechanical variables without ground truth

Prof. Dr. Anne Koelewijn Biomechanical Motion Analysis and Creation Group, FAU Erlangen-Nürnberg

Machine Learning and PDEs Workshop Research Center for Mathematics of Data 30.04.2025

Understanding Human Movement

Motivation

Diagnosis and Disease Monitoring

Rehabilitation

Performance Optimization

Device Optimization

Movement Analysis

Standard Approach: Optical Motion Capture

Movement Analysis

Standard Approach: Optical Motion Capture

Challenges

Restricted environment

• Time consuming

Inertial Sensors

Measurements Anywhere

Dorschky et al., J Biomech, 2019; Nitschke et al., Front Bioeng Biotech, 2024; Dorschky, Nitschke, et al., Front Bioeng Biotech, 2025

Inertial Sensors

Measurements Anywhere

Supervised Learning

Application in Biomechanics

Supervised Learning

FAU

Application in Biomechanics

Creating a Ground Truth

Combining Inertial and Optical Motion Capture

Ground truth variables through optical motion capture

One experiment with two measurements

- Optical motion capture
- Inertial sensor measurements
- \rightarrow Synchronization important

Data Availability

Requirements and Challenges

Variation is required of usability and applicability

- Movements
- Participants
- Sensor positions

Optical motion capture

- Limited capture volume
- Long preparation (1 hr of marker placement)
- \rightarrow Large datasets are rare
- Some university or hospital labs have 20+ years of data available (e.g., Johnson et al., *IEEE TBME*, 2020)
- → Combining datasets is tricky (Fleischmann et al., ACM TIST, 2024)

Supervised Learning in Biomechanics

Ground truth is not measured directly

Musculoskeletal Dynamics

Differential Equations

Multibody dynamics of skeleton

$$M(\boldsymbol{q})\ddot{\boldsymbol{q}} + C(\boldsymbol{q}, \dot{\boldsymbol{q}})\dot{\boldsymbol{q}} + G(\boldsymbol{q}) = d\boldsymbol{F}_{SEE} + J(\boldsymbol{q})^T\boldsymbol{F}_{ext}$$

Muscle dynamics

$$\dot{\mathbf{a}}(t) = \left(\frac{\mathbf{u}(t)}{T_{act}} + \frac{1 - \mathbf{u}(t)}{T_{deact}}\right) \left(\mathbf{u}(t) - \mathbf{a}(t)\right)$$
$$\mathbf{a}(t) f \left(\mathbf{I}_{CE}(t)\right) g \left(\mathbf{v}_{CE}(t)\right) \mathbf{F}_{iso} + \mathbf{F}_{PEE}(t) = \mathbf{F}_{SEE}(t)$$

Model parameters

- From cadaver studies
- Example: Dempster (1955)
- 10 elderly white males

Segment		Segment Weight/Total Body Weight	Center of Mass/ Segment Length		Radius of Gyration/ Segment Length			
	Definition		Proximal	Distal	C of G	Proximal	Distal	Density
Hand	Wrist axis/knuckle II middle finger	0.006 M	0.506	0.494 P	0.297	0.587	0.577 M	1.16
Forearm	Elbow axis/ulnar styloid	0.016 M	0.430	0.570 P	0.303	0.526	0.647 M	1.13
Upper arm	Glenohumeral axis/elbow axis	0.028 M	0.436	0.564 P	0.322	0.542	0.645 M	1.07
Forearm and hand	Elbow axis/ulnar styloid	0.022 M	0.682	0.318 P	0.468	0.827	0.565 P	1.14
Total arm	Glenohumeral joint/ulnar styloid	0.050 M	0.530	0.470 P	0.368	0.645	0.596 P	1.11
Foot	Lateral malleolus/head metatarsal II	0.0145 M	0.50	0.50 P	0.475	0.690	0.690 P	1.10
Leg	Femoral condyles/medial malleolus	0.0465 M	0.433	0.567 P	0.302	0.528	0.643 M	1.09
Thigh	Greater trochanter/femoral condyles	0.100 M	0.433	0.567 P	0.323	0.540	0.653 M	1.05
Foot and leg	Femoral condyles/medial malleolus	0.061 M	0.606	0.394 P	0.416	0.735	0.572 P	1.09
Total leg	Greater trochanter/medial malleolus	0.161 M	0.447	0.553 P	0.326	0.560	0.650 P	1.06
Head and neck	C7-T1 and 1st rib/ear canal	0.081 M	1.000	- PC	0.495	0.116	-PC	1.11
Shoulder mass	Sternoclavicular joint/glenohumeral axis		0.712	0.288	_			1.04
Thorax	C7-T1/T12-L1 and diaphragm*	0.216 PC	0.82	0.18	-			0.92
Abdomen	T12-L1/L4-L5*	0.139 LC	0.44	0.56	\rightarrow			_
Pelvis	L4-L5/greater trochanter*	0.142 LC	0.105	0.895	_			_
Thorax and abdomen	C7-T1/L4-L5*	0.355 LC	0.63	0.37		_		
Abdomen and pelvis	T12-L1/greater trochanter*	0.281 PC	0.27	0.73				1.01
Trunk	Greater trochanter/glenohumeral joint*	0.497 M	0.50	0.50	_		_	1.03
Trunk head neck	Greater trochanter/glenohumeral joint*	0.578 MC	0.66	0.34 P	0.503	0.830	0.607 M	
Head, arms, and trunk (HAT)	Greater trochanter/glenohumeral joint*	0.678 MC	0.626	0.374 PC	0.496	0.798	0.621 PC	-
HAT	Greater trochanter/mid rib	0.678	1.142		0.903	1.456		_

Supervised Learning in Biomechanics

Ground truth is not measured directly

Supervised Learning in Biomechanics

Ground truth is not measured directly

Similarity of human movement

Creating a good model

Data-based model to estimate joint moments

- Training data: walking at normal walking speed
- Output: mean of training data

Model performance

- Correlation: at least 0.98
- Normalized RMSE of less than 7%
- → Similar to state-of-the-art neural network (e.g., Mundt et al., *Med Biol Eng Comput*, 2020)

What defines good performance?

SSPINNpose

Machine Learning in Biomechanics

Gambietz et al., ACM TIST, in review

SSPINNpose

Self-Supervised

Pose and force estimations

Inertial sensor SSPINNpose Joint Angles measurements and Moments RNN Ð Φ -100 gle_r in c -40 50 Cycle in % 100 -60 <u>loUo</u>j -80 50 Gait Cycle in %100

Physics-Informed

Neural Network

Gambietz et al., ACM TIST, in review

Self-Supervised Learning

No need for labelled ground truth

Self-Supervised Learning

No need for labelled ground truth

Methods

Recurrent Neural Network Design

Inputs at each time step:

- IMU measurements
- Accelerations and velocities
- Body inertial parameters
- IMU location and orientation
- Ground contact parameters

Model architecture:

- Recurrent neural network
- Long short-term memory (LSTM) network
- Bi-directional LSTM
- Two dense layers

Outputs at each time step:

- Generalized coordinates, velocities and accelerations
- Joint torques
- Ground reaction forces
- Movement speed

Gambietz et al., ACM TIST, in review

Training Approach

Loss Function

Three core losses

- Kane's loss $\mathcal{L}_{K} = (|F_{r}^{*} + F_{r}|)^{2}$ (Kane & Levinson, 1985)
- Internal and external forces are in equilibrium: $|F_r^* + F_r| = 0$
- Temporal consistency loss $\mathcal{L}_T = \frac{x(n+1)-x(n)}{\Delta t} v(n) = 0$

States in consecutive time points match velocities and accelerations

- Solves exploding gradient problem
- IMU loss $\mathcal{L}_{IMU} = (s_{IMU} \hat{s}_{IMU})^2$
- Virtual IMU output matches measured IMU output

Auxiliary losses

- Physiology of movement: energy minimization
- Realism of movement

 $M(\boldsymbol{q})\ddot{\boldsymbol{q}} + C(\boldsymbol{q}, \dot{\boldsymbol{q}})\dot{\boldsymbol{q}} + G(\boldsymbol{q}) = \tau + J(\boldsymbol{q})^T \boldsymbol{F}_{ext}$

Gambietz et al., ACM TIST, in review

Experimental Dataset for Validation

Optical and Inertial Motion Capture

Recordings

- 7 synchronized IMUs recording continuously
- Optical motion capture (ground truth) for a single stride
- Conditions (0.9 4.9 m/s)
- Slow, normal and fast walking
- Slow, normal and fast running

Dataset

- 10 participants (182 ± 5 cm, 76.9 ± 8.6 kg)
- 76 minutes of suitable unlabelled IMU data
- Training on sequences of 256 time steps
- Testing on full sequences

Dorschky et al., *J Biomech*, 2019

Results Motion Video

2D side view

- Sufficient for straight walking and running
- Extension to 3D possible

Reconstruction of multiple running steps

 So far, focus on single movement cycles captured with optical motion capture

Gambietz et al., ACM TIST, in review; Dorschky et al., J Biomech, 2019

Model	Need for labels	Latency	Joint angle error (deg)	Joint torque error (BWBH%)	Ground reaction force error (BW%)	Speed error (m/s)
SSPINNpose (LSTM)	No	3.5 ms	8.7	4.9	16.4	0.19
SSPINNpose (Bi-LSTM)	No	3.5 ms	8.9	5.0	18.8	0.15
CNN-based regression	Yes	<1 ms*	4.9	1.4	10.7	-
Optimal control	No	50 min	6.3	2.6	17.9	0.25

*inference only possible after full gait cycle

SSPINNpose

- is suitable for (near) real time inference in unrestricted environments
- leads to higher errors than state of the art
- Same information available as in optimal control \rightarrow possibility for improvement

Gambietz et al., ACM TIST, in review

Results

Joint Angles and Moment Graphs

Joint angles are Hip Angle **Hip Moment** 50 OMC acceptable [%HBH%] [deg] IMU -25 Walking 0 Hip and knee Running moment deviate 100 50 50 100 0 Ω Knee Angle **Knee Moment** Vertical GRF during stance [%HBH%] 100 • Finetuning of Kane's [deg] [M8] loss Possible improvement 50 50 50 100 100 0 0 Ω by training of Ankle Moment Ankle Angle Horizontal GRF musculoskeletal 25 -0.6 [%HBH%] [69] –25 [BW] model 0.0 -10 -0.3 -0.650 100 50 100 50 0 0 n

Time [%]

Time [%]

Gambietz et al., ACM TIST, in review

Time [%]

100

100

Self-Supervised Learning

No need for labelled ground truth

Self-Supervised Learning

No need for labelled ground truth

Training Virtual Sensor Model

Automatic Estimation of IMU Positions

Successful personalization of IMU position

Important for usability

Gambietz et al., ACM TIST, in review

Future Work

Validation and Improvements

Summary SSPINNpose Contribution

Through self-supervised physics informed training:

Movement recording anywhere

Direct feedback

Potential for personalized and specific outcomes

2 May, 2025

30

Diagnosis and Disease Monitoring

Friedrich-Alexander-Universität Technische Fakultät

BioMAC research group

🖌 @drannek.bsky.social

https://www.asm.tf.fau.de/en/startseite/research/biomac/