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Understanding Human Movement
Motivation

Diagnosis and Disease Monitoring Performance Optimization

Device OptimizationRehabilitation
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Movement Analysis
Standard Approach: Optical Motion Capture

Motion Laboratory Joint Angles 
and Moments

Musculoskeletal
Model

Muscle States and 
Energy Expenditure

𝑀 𝒒 ሷ𝒒 + 𝐶 𝒒, ሶ𝒒 ሶ𝒒 + 𝐺 𝒒 = 𝝉 + 𝐽(𝒒)𝑇𝑭𝑒𝑥𝑡

𝑭𝐶𝐸 = 𝐚𝑓 𝐥𝐶𝐸 𝑔 𝐯CE 𝐅𝑖𝑠𝑜

ሶ𝒂 =
𝐮

𝑇𝑎𝑐𝑡
+
1 − 𝐮

𝑇𝑑𝑒𝑎𝑐𝑡
𝐮 − 𝐚

min
𝑞𝑖



𝑗
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2
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𝛕 + 𝐽(𝒒)𝑇𝑭𝑒𝑥𝑡 −𝑀 𝒒 ሷ𝒒 + 𝐶 𝒒, ሶ𝒒 ሶ𝒒 + 𝐺 𝒒
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Muscle States and 
Energy Expenditure
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Movement Analysis
Standard Approach: Optical Motion Capture

Motion Laboratory Joint Angles 
and Moments

Musculoskeletal
Model

•Challenges
• Restricted environment • Time consuming
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•Measure
• Accelerations
• Angular velocities

•Advantages
• Useable anywhere
• Affordable

•Disadvantages
• No global positions
• Integration drift

Inertial Sensors
Measurements Anywhere

Measured 
Inertial Sensor

Data

Virtual Inertial
Sensor DataMinimization

Biomechanical 
Simulation

•Optimal control-based estimation

Dorschky et al., J Biomech, 2019; Nitschke et al., Front Bioeng Biotech, 2024; Dorschky, Nitschke, et al., Front Bioeng Biotech, 2025
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•Measure
• Accelerations
• Angular velocities

•Advantages
• Useable anywhere
• Affordable

•Disadvantages
• No global positions
• Integration drift

Inertial Sensors
Measurements Anywhere

Measured 
Inertial Sensor

Data

Virtual Inertial
Sensor DataMinimization

Biomechanical 
Simulation

•Optimal control-based estimation

Can we use machine learning to map inertial sensor 
data to biomechanical variables?

Dorschky et al., J Biomech, 2019; Nitschke et al., Front Bioeng Biotech, 2024; Dorschky, Nitschke, et al., Front Bioeng Biotech, 2025



Training

2 May, 2025Anne Koelewijn | MLPDE 2025 Erlangen | SSPINNpose 7

Supervised Learning
Application in Biomechanics

Training Data

Ground truth

Input Data
Estimated 

Biomechanical 
Variables

Loss
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Supervised Learning
Application in Biomechanics

Training Data

Ground truth

Input Data
Estimated 

Biomechanical 
Variables

Loss

Joint Angles 
and Moments

Muscle States and 
Energy Expenditure

Motion Laboratory Musculoskeletal
Model

We cannot directly measure the ground truth



Musculoskeletal
Model

•Ground truth variables through optical motion capture

•One experiment with two measurements 
• Optical motion capture
• Inertial sensor measurements
→Synchronization important

Creating a Ground Truth
Combining Inertial and Optical Motion Capture
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Muscle States and 
Energy Expenditure

Motion Laboratory Joint Angles 
and Moments
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•Variation is required of usability and applicability
• Movements
• Participants
• Sensor positions

•Optical motion capture
• Limited capture volume
• Long preparation (1 hr of marker placement)
→Large datasets are rare
• Some university or hospital labs have 20+ years of data 

available (e.g., Johnson et al., IEEE TBME, 2020)

→Combining datasets is tricky (Fleischmann et al., ACM TIST, 2024)

Data Availability
Requirements and Challenges



Training
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Supervised Learning in Biomechanics
Ground truth is not measured directly

Training Data

Marker 
and 
GRF 
data

Input Data

Musculo-
skeletal
model

Estimated 
Biomechanical 

Variables

Loss“Ground 
truth”



•Multibody dynamics of skeleton
𝑀 𝒒 ሷ𝒒 + 𝐶 𝒒, ሶ𝒒 ሶ𝒒 + 𝐺 𝒒 = 𝑑𝑭𝑆𝐸𝐸 + 𝐽(𝒒)𝑇𝑭𝑒𝑥𝑡

•Muscle dynamics

ሶ𝐚 𝑡 =
𝐮(𝑡)

𝑇𝑎𝑐𝑡
+
1 − 𝐮(𝑡)

𝑇𝑑𝑒𝑎𝑐𝑡
𝐮(𝑡) − 𝐚 𝑡

𝐚(𝑡)𝑓 𝐥𝐶𝐸 𝑡 𝑔 𝐯𝐶𝐸 𝑡 𝐅𝑖𝑠𝑜 + 𝐅𝑃𝐸𝐸 𝑡 = 𝐅𝑆𝐸𝐸 𝑡

•Model parameters
• From cadaver studies
• Example: Dempster (1955)
• 10 elderly white males

Musculoskeletal Dynamics
Differential Equations

Degrees of 
freedom

Muscles

Ground 
contact

Segments

Virtual 
sensorsPhoto: The Shade Room
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Supervised Learning in Biomechanics
Ground truth is not measured directly

Training Data

Marker 
and 
GRF 
data

Input Data

Musculo-
skeletal
model

Estimated 
Biomechanical 

Variables

Loss“Ground 
truth”



Training

2 May, 2025Anne Koelewijn | MLPDE 2025 Erlangen | SSPINNpose 14

Supervised Learning in Biomechanics
Ground truth is not measured directly

Training Data

Marker 
and 
GRF 
data

Input Data

Musculo-
skeletal
model

Estimated 
Biomechanical 

Variables

Loss“Ground 
truth”

Modelling errors are learned in the network



Similarity of human movement
Creating a good model
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•Data-based model to estimate joint moments
• Training data: walking at normal walking speed
• Output: mean of training data

•Model performance
• Correlation: at least 0.98 
• Normalized RMSE of less than 7%
→Similar to state-of-the-art neural network

(e.g., Mundt et al., Med Biol Eng Comput, 2020)

What defines good performance?



Inertial sensor 
measurements
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•Self-Supervised Physics-Informed Neural Network

•Pose and force estimations

SSPINNpose
Machine Learning in Biomechanics

Joint Angles 
and Moments

SSPINNpose

RNN

Gambietz et al., ACM TIST, in review

Machine learning for gait analysis is challenging
• Small datasets
• No direct ground truth
• Model quality is not easily verified



Inertial sensor 
measurements
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•Self-Supervised Physics-Informed Neural Network

•Pose and force estimations

SSPINNpose
Machine Learning in Biomechanics

Joint Angles 
and Moments

SSPINNpose

RNN

Gambietz et al., ACM TIST, in review
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Self-Supervised Learning
No need for labelled ground truth

Training Data

Musculo-
skeletal model

Estimated 
Biomechanical 

Variables

Loss

Input Data



Training
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Self-Supervised Learning
No need for labelled ground truth

Training Data

Musculo-
skeletal model

Estimated 
Biomechanical 

Variables

Loss

Input Data

Direct training on measured data

Training of musculoskeletal model parameters
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Methods

•Inputs at each time step:
• IMU measurements
• Accelerations and velocities
• Body inertial parameters
• IMU location and orientation
• Ground contact parameters

•Outputs at each time step:
• Generalized coordinates, 

velocities and  accelerations
• Joint torques
• Ground reaction forces
• Movement speed

•Model architecture:
• Recurrent neural network
• Long short-term memory 

(LSTM) network
• Bi-directional LSTM
• Two dense layers

Recurrent Neural Network Design

Inertial sensor 
measurements

Joint Angles 
and Moments

RNN

Gambietz et al., ACM TIST, in review
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•Three core losses

• Kane’s loss ℒ𝐾 = 𝐹𝑟
∗ + 𝐹𝑟

2 (Kane & Levinson, 1985)
• Internal and external forces are in equilibrium: 𝐹𝑟∗ + 𝐹𝑟 = 0

• Temporal consistency loss ℒ𝑇 =
𝑥 𝑛+1 −𝑥 𝑛

Δ𝑡
− 𝑣 𝑛 = 0

• States in consecutive time points match velocities and accelerations
• Solves exploding gradient problem

• IMU loss ℒ𝐼𝑀𝑈 = 𝑠𝐼𝑀𝑈 − Ƹ𝑠𝐼𝑀𝑈
2

• Virtual IMU output matches measured IMU output

•Auxiliary losses
• Physiology of movement: energy minimization
• Realism of movement

Training Approach
Loss Function

Gambietz et al., ACM TIST, in review

𝑀 𝒒 ሷ𝒒 + 𝐶 𝒒, ሶ𝒒 ሶ𝒒 + 𝐺 𝒒 = 𝜏 + 𝐽(𝒒)𝑇𝑭𝑒𝑥𝑡
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•Recordings
• 7 synchronized IMUs recording continuously
• Optical motion capture (ground truth) for a single 

stride

•Conditions (0.9 - 4.9 m/s)
• Slow, normal and fast walking
• Slow, normal and fast running

•Dataset
• 10 participants (182 ± 5 cm, 76.9 ± 8.6 kg)
• 76 minutes of suitable unlabelled IMU data
• Training on sequences of 256 time steps
• Testing on full sequences

Experimental Dataset for Validation
Optical and Inertial Motion Capture

Dorschky et al., J Biomech, 2019
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Results
Motion Video

•2D side view
• Sufficient for straight walking and running
• Extension to 3D possible

•Reconstruction of multiple running steps
• So far, focus on single movement cycles captured

with optical motion capture

Gambietz et al., ACM TIST, in review; Dorschky et al., J Biomech, 2019
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•*inference only possible after full gait cycle

•SSPINNpose
• is suitable for (near) real time inference in unrestricted environments
• leads to higher errors than state of the art
• Same information available as in optimal control → possibility for improvement

Results
Error Metrics

Model Need for 
labels

Latency Joint angle 
error (deg)

Joint torque 
error (BWBH%)

Ground 
reaction force 
error (BW%)

Speed 
error 
(m/s)

SSPINNpose (LSTM) No 3.5 ms 8.7 4.9 16.4 0.19
SSPINNpose (Bi-LSTM) No 3.5 ms 8.9 5.0 18.8 0.15
CNN-based regression Yes <1 ms* 4.9 1.4 10.7 -
Optimal control No 50 min 6.3 2.6 17.9 0.25

Gambietz et al., ACM TIST, in review
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•Joint angles are 
acceptable

•Hip and knee 
moment deviate 
during stance
• Finetuning of Kane’s 

loss
• Possible improvement 

by training of 
musculoskeletal 
model

Results
Joint Angles and Moment Graphs

Gambietz et al., ACM TIST, in review
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Self-Supervised Learning
No need for labelled ground truth

Training Data

Musculo-
skeletal model

Estimated 
Biomechanical 

Variables

Loss

Input Data
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Self-Supervised Learning
No need for labelled ground truth

Training Data

Musculo-
skeletal model

Estimated 
Biomechanical 

Variables

Loss

Input Data

Direct training on measured data

Training of musculoskeletal model parameters
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•Successful personalization of IMU position

•Important for usability

Training Virtual Sensor Model
Automatic Estimation of IMU Positions

Gambietz et al., ACM TIST, in review
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Future Work
Validation and Improvements

Performance improvement Other sensors

PredictionsMRI-based validation of personalization
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Summary
SSPINNpose Contribution

•Through self-supervised physics informed training:

•Movement recording anywhere

Direct feedback

Potential for personalized and specific outcomes

Performance 
Optimization

Device Optimization

Rehabilitation

Diagnosis and Disease 
Monitoring



BioMAC research group

anne.koelewijn@fau.de

@drannek.bsky.social

https://www.asm.tf.fau.de/en/startseite/research/biomac/

https://www.asm.tf.fau.de/en/startseite/research/biomac/
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