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Overall goal of reinforcement learning

observation action

Figure: Framework for reinforcement learning (diagram from David Silver's
lectures)
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Some notable successes

Go has 1070 legal states. Recently AlphaGo beat humans (years ahead
of “schedule™)
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Reinforcement Learning is Direct
Adaptive Optimal Control

Richard S. Sutton, Andrew G. Barto, and Ronald J. Williams

Reinforcement learning is one of the major
neural-network approaches to leaming con-
trol. How should it be viewed from a control
systems perspective? Control problems can be
divided into two classes: 1) regulation and
tracking problems. in which the objective s to
follow a reference trajectory, and 2) optimal
contol probiems, in which th objctive s 1
extremizea

RL and Optimal Control

meets a collection of specifications constitut-
ing the control objective. In some problems,
the control objective is defined in terms of a
reference level o reference trajectory that the
controlled system’s output should match or
track as closely as possible. Stability is the key
issue in these regulation and tracking
problems. In other problems, the control ob-

behavior that is not neun\anly defined in terms
of a reference Uajectory. Adaptive methods for
problems of the first kind are well known, and
include self-tuning regulators and model-refer-
ence methods, whereas adaptive methods for
optimal-control problems have received rela-
tively little attention. Moreover, the adaptive
optimal-control methods that have been studied
arealmostall indirect methods, in which controls
are recomputed from an estimated system model
at each step. This is inherently

jective is functional of the con-
trolled system’s behavior that is not
necessarily defined in terms of a reference
level o trajectory. The key issue in the latter
problems is constrained optimization: here
optimal-control methods based on the cal-
culus of variations and dynamic programming
have been extensively studied. In recent years,
optimal control has received less attention
than regulation and tracking, which have
proven to be more tractable both analytically

complex, making adaptive methods in which
the optimal controls are estimated directly
more atractive. We view reinforcement leam-
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and which produce more
reliable controls for many applications

When a detailed and accurate model of the
system to be controlled is not available, adap-

Optimal Control and RL

Ideally, one would like to have both the trajec-
tories and the required controls determined s0
as to extremize the objective function.

For both tracking and optimal control, it is
usual 1o distinguish between indirect and
direct adaptive control methods. An indirect
method relies on a system identification pro-
cedure to form an explicit model of the con-
trolled system and determines then the control
fule from the model. Direct methods deter-
mine the control rule without forming such a
system model.

In this paper we briefly describe learning
methods known as reinforcement learning
methods, and present them as a direct ap-
proach (o adaptive optimal control. These
methods have their roots in studies of animal
learning and in early leaming control work
(e.g 221), and are now an active area of
research in neural netvorks and machine learm-
ing (e.g..see [ 11, [411). We summarize here an
emerging deeper understanding of these
methods that s being obtained by viewing




An RL algorithm: Q-learning

Given a reward function r(x), a; € (0, 1] for all t, xp initial state, an initial
action-value function Q(x, u) and a set of actions U:

@ Pick u; using Q and x; (e.g. ur = arg max Q(x, u), or e-greedy);
@ Observe the state x;+1 and the reward r(x¢+1)

o Update Q as follows
Q(xe, ue) + Q(xe, ue) + ae(r(xes1) + max Q(xe11, u) — Q(xe, uy))

@ Repeat the procedure at x;4+1 until the end of the episode (e.g. a
time T or a recurrent state condition)
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RL: Model Free VS Model Based

1) Model Free Algorithms: aim to approximate the Value Function,
combining the Dynamic Programming Principle and/or the Monte
Carlo Method. Examples:

o SARSA;
e Q-learning;
e etc.

2) Model Based Algorithms: aim to approximate the control system

and to control it simultaneously. Examples:
e PILCO (using GPs)
o DeepPILCO (using DNN)
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PILCO: problem setting

Given xg initial condition, consider the deterministic problem
Xt4+1 = f(Xt,Ut), tZO,l, T,
where the function f is unknown.

A policy is a deterministic mapping 7 : R” x R¥ — A, 7(x, ) € A.
0 is the parameter which one can use to improve the policy.

Goal: Maximize the reward (or minimize the cost)

.
J7(0) = Erc(x)],
t=0

where

p(f(xt, ue) |(Xe te), - -+ » (X0, o) ) ~ N (tie, ).

(xt, ut), ..., (x0, ug) are the training inputs.
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Summary of PILCO

For a fixed class of policies {m(-,0): 6 € ©}:
@ Given a prior distribution over f, compute the expected value

Er [e(xt)]

(policy evaluation);
@ Improve the policy by adjusting the parameter 6
(policy improvement).

@ Given the new experience on the system, compute the posterior
distribution on the dynamics f.
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Prior /Posterior distributions in GPs

Suppose one has xi, ..., xq observed inputs and yi, ...,y observed
outputs. Assume the representation h(x;) = y; + €; where h is an unknown
function and ¢; ~ N (0, 0,), for i =1,...,d independent.

Bayes' Theorem yields:

_ p(y| h, x, H)P(h’ 9)
plhlx.y, 0) = == . )

where
@ 0 paramater controlling the Gaussian distribution (hyper-parameter);
e p(h|0) is the prior distribution;

e p(y| h,x, 0) is a jointly (finite) Gaussian distribution with mean
h(x) = (h(x1), ..., h(xq)) and covariance matrix diag(c?2,...,o?
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Figure: From YouTube Channel: PilcoLearner
(https://www.youtube.com /watch?v=Xiig T GKZfks)
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pilco_learner.mp4
Media File (video/mp4)


References on PILCO

@ Deisenroth, Rasmussen, “PILCO: A Model-Based and Data-Efficient
Approach to Policy Search”,in Proceedings of the 28th International
Conference on machine learning (ICML-11), 2011

@ Deisenroth, Fox, Rasmussen, “Gaussian processes for data-efficient
learning in robotics and control”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2015.

o Gal, McAllister, Rasmussen “Improving PILCO with Bayesian Neural
Network Dynamics Models”, (ICML-16), 2016

@ Deisenroth. “Efficient Reinforcement Learning using Gaussian
Processes”, PhD Thesis.
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Assume that the underlying (unknown) physical system is represented by a
function f and that does not drastically change in time (no failure, no
fault detections etc).

Does the approximated optimal policy converge to the optimal
policy of the physical system?
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Our framework

The state equation of the system is

/

X(t) = F(x(1) + ) u'(t)gi(x(t)) t € [to, T]
(5) i

X(to) = XQ.

We define the cost functional (or payoff functional)
T
o [x(), u()] =/ G(x(t)) + uT (t)Ru(t)dt + h(x(T)), u() € Uy,
to

where Uy, = {u : [to, T] — R/, measurable} and R is a positive definite
matrix.

The goal is to minimize Jy, over the trajectory/control pairs of (S).
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Our framework

However, we assume as known just the functions gy, ..., g, while the drift
f is unknown. This leads to the optimal control

minimize/ Jio[x¢ (+), u(-)]pV (dF)
X

over the (x, u) s.t.

(0C)n

x(t) = f(x(2)) + p_ u'()ai(x(t)) t € [to, T]

/
i=1

x(to) = xo-

\

Here, pV(df) is a probability measure defined on X c Co(R")
(constructed at the N-th episode).
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Research question: (Falcone - P. - Pesare,

Pesare- Scarinci, '25)

Suppose that the real, underlying, physical system is

/

o ) X(1) = F(x(0) + D ' (t)ai(x(1) t € [to, T]
(5) =i

where 7 is the real drift. Assume that f € X and that pN — dz (that is,

p"N weakly converges to 4;).

Then what does it happen to the optimal controls?
Here we will tackle the more general case in which pN — p for a generic p.
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Standing Assumptions

H1) For all f € X C CO(R™), exist L¢, My s.t.

[f(x) = f(¥)| < Lelx =y, for all x,y € R”
and
If(x)| < Mg(1+ |x]), for all x € R™,
H2) For g : R" — M™/ exist Lg, M, s.t.

lg(x) —gW)Il < Lglx =yl forall x,y e R”

and
llg(x)]] < Mg (1+ |x]) for all x e R™;

H3) G:R" — R, h:R" — R are bounded below and continuous.
H4) R € M*/ is positive definite.
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A first convergence result (P. - Pesare- Scarinci, '25)

Theorem (I-convergence): Let the “Standing Assumptions” be
satisfied. Assume that pV — p. Then, for each s € [0, T] and xp € R”,
the sequence of functionals Fy : (L? ([s, T],R'), 7,,) — R defined as

Fu(u) ::/X [/T G (t: u))dt] de(f)+/Tu(t)TRu(t)dt

S

[-converges to F : (L2 ([s, TI,R) ,7) — R defined as

F(u) ::/X [/OT G(x¢(t; u))dt] d,s(f)+/0Tu(t)TRu(t)dt.
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Implications of the I'-convergence

I11) Take a sequence of minimizers uy € U to the optimal control problem
(OC)n. If 0 is a cluster point of {up}nen (with resepct to the weak
convergence in L%([s, T], U), then & is a minimizer of (OC).

12)

Vis(s,x0) = limsup V,n(s, x0), for all (s,xp) € [0, T] x R"

N—oo

where Vj is the value function of (OC) and Vv is the value function
of (OC)n
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A stronger result on the value functions’ convergence

(Pesare-P.-Falcone, '21)

Theorem: Given the sequence {p"}, assume that Wy (pV, p) — 0. We
use Vv and Vj to denote the value function for the average problem with
pN and p respectively.
Then, for each K C [0, T] x R"” compact,
Vpoy — Vs uniformly in K for N — oo,
and, in particular
Vo = Vslloo,x < CkWA(R", )

with Ck positive constant depending just on the set K.
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Necessary conditions of optimality for (OC)

o (D): Assume that X C C!(R";R"), X complete metric space and
that g, G, h are mappings of class C*.

Theorem: Let {(%X,0)(-): f € X} be a minimizer for (OC). Assume the
Standing Assumptions and (D). Then, there exists a function
Ar € WHi([s, T];R") for all f € X s.t.

A

u(t):Rl/Xg(f(f(t))T)\f(t) dp(f)  forall te[s, T]:

T
_}\f(t) = ( ) + Z t) ngl(xf ))) )‘f(t) - VXG()?f(t))

a.e. t €[s, T], for all f € supp(p),

—Ar(T) = Vih(X¢(T)) for all f € supp(p) .
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Convergence of the multipliers

Theorem: Assume the “Standing Assumptions” and (D).
Consider {p"N'} sequence of measures such that

pNﬁp\.

Suppose that u"(-) is the optimal control of (OC)y and is converging
weakly in L2([s, T];R) to a(-). Then a(-) is optimal for (OC).

Furthermore a cluster point of any sequence of adjoint variables
{A¥: f e X}nen related to {(x),uN)(:): f € X} is an adjoint arc for
{(%¢,0)(-) : f € X}, implying that u™N(-) — a(-) uniformly in [s, T].
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Comments

@ The previous theorem requires knowing the minimizers u" to be
applied (not very convenient...);

@ This is due to the fact that the problem is nonlinear, hence there are
several minimizers as well as extremals that are not minimizers;

@ A natural question is then to provide conditions such that, if we take
{(X¢, 0) : f € X} satisfying the necessary conditions, then
{(X¢,0) : f € X} is a minimizer for (OC).

@ In this case, the previous theorem provides a way to find sub-optimal
controls.
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Sufficient Conditions

Call

<= /x <f(Xf)T>\f - G(Xf)) ﬁ(df)> -

(CC) Assume that x¢ — H(xr, Ar) is concave for all A¢, while the map
x — h(x) is convex.

H(x¢, Af) = max {/x (Ar - (F(xr) + g(x¢) - u) — G(x¢)) p(df) — uTRu}

Theorem: Assume the “Standing Assumptions”, (D) and (CC). Take
{(Xf, 0)(-) : f € X} feasible process such that the Necessary Conditions
hold true. Then {(%¢, d)(-) : f € X} is a global minimizer for (OC).
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Comments

Suppose that the real, underlying, physical system is
I .
3) X(t) = F(x(1)) + ) _ u'(t)gi(x(t)) t € [to, T]
i=1

X(to) = Xp.
where f is the real drift and that pV — dz (that is, pN weakly converges
to 5,9)
Condition (CC) reads as
x = H(x,\) = f(x)TA = G(x)

is concave for each A. Notice that, in RL, G is a design function...
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Special case: Linear Quadratic Regulator

(Pesare-P.-Falcone '21)

Consider the state dynamics:

xa(t) = Axa(t) + Bu(t), x(0) = xo (0.1)

@ State vector: x4 € R” State matrix: A € Q C M"*" unknown
@ Control vector: v e R/ Control matrix: B € M"*/
Quadratic cost:

min {; /Q ( /0 TXA(S)TQXA(S) + uT(s)Ru(s) ds + xJ (T) GxA(T)> p(dA)}

e Q,G € M™" symmetric, semipositive definite (Q, G > 0),
R € M symmetric, positive definite (R > 0).
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LQR Framework

@ p is a measure over the compact set of matrices ;

@ The set of possible dynamics is
X ={f:R"xXR™ = R": f(x,u) =Ax+ Bu, A€ Q, uecl}.

p can be regarded as a measure over X,
@ p tracks the belief that an agent has on the dynamics.

Remark: In the LQR setting, the optimal policy is a linear feedback
control!
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Conclusions and Open questions

@ We presented a mathematical framework able to justify certain
model-based RL approaches

We showed certain convergence properties of the optimal controls
(optimal policies, in the RL language)

Open question: Stability analysis for Hamilton-Jacobi Equations
Open question: Convergence result for Riccati equations;

Open question: Convergence results for the control constrained case.

Open question: Applications to PDEs.

Thanks for your attention!
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