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Overall goal of reinforcement learning

Figure: Framework for reinforcement learning (diagram from David Silver’s
lectures)
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Some notable successes

Go has 10170 legal states. Recently AlphaGo beat humans (years ahead
of “schedule”)
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RL and Optimal Control
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An RL algorithm: Q-learning

Given a reward function r(x), αt ∈ (0, 1] for all t, x0 initial state, an initial
action-value function Q(x , u) and a set of actions U:

Pick ut using Q and xt (e.g. ut = argmaxQ(xt , u), or ϵ-greedy);

Observe the state xt+1 and the reward r(xt+1)

Update Q as follows

Q(xt , ut)← Q(xt , ut) + αt

(
r(xt+1) + max

u∈U
Q(xt+1, u)− Q(xt , ut)

)
Repeat the procedure at xt+1 until the end of the episode (e.g. a
time T or a recurrent state condition)
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RL: Model Free VS Model Based

1) Model Free Algorithms: aim to approximate the Value Function,
combining the Dynamic Programming Principle and/or the Monte
Carlo Method. Examples:

SARSA;
Q-learning;
etc.

2) Model Based Algorithms: aim to approximate the control system
and to control it simultaneously. Examples:

PILCO (using GPs)
DeepPILCO (using DNN)
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PILCO: problem setting

Given x0 initial condition, consider the deterministic problem

xt+1 = f (xt , ut), t = 0, 1 . . . ,T ,

where the function f is unknown.

A policy is a deterministic mapping π : Rn × Rk → A, π(x , θ) ∈ A.
θ is the parameter which one can use to improve the policy.

Goal: Maximize the reward (or minimize the cost)

Jπ(θ) =
T∑
t=0

Ef [c(xt)] ,

where
p
(
f (xt , ut) |(xt , ut), . . . , (x0, u0)

)
∼ N (µt ,Σt).

(xt , ut), . . . , (x0, u0) are the training inputs.
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Summary of PILCO

For a fixed class of policies {π(·, θ) : θ ∈ Θ}:
Given a prior distribution over f , compute the expected value

Ef [c(xt)]

(policy evaluation);

Improve the policy by adjusting the parameter θ
(policy improvement).

Given the new experience on the system, compute the posterior
distribution on the dynamics f .
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Prior/Posterior distributions in GPs

Suppose one has x1, . . . , xd observed inputs and y1, . . . , yd observed
outputs. Assume the representation h(xi ) = yi + ϵi where h is an unknown
function and ϵi ∼ N (0, σϵi ), for i = 1, . . . , d independent.
Bayes’ Theorem yields:

p(h |x, y, θ) = p(y| h, x, θ)p(h| θ)
p(y |x, θ)

where

θ paramater controlling the Gaussian distribution (hyper-parameter);

p(h| θ) is the prior distribution;

p(y| h, x, θ) is a jointly (finite) Gaussian distribution with mean
h(x) = (h(x1), . . . , h(xd)) and covariance matrix diag(σ2

ϵ1 , . . . , σ
2
ϵd
).
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Figure: From YouTube Channel: PilcoLearner
(https://www.youtube.com/watch?v=XiigTGKZfks)
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pilco_learner.mp4
Media File (video/mp4)
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Question

Assume that the underlying (unknown) physical system is represented by a
function f̂ and that does not drastically change in time (no failure, no
fault detections etc).

Does the approximated optimal policy converge to the optimal
policy of the physical system?
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Our framework

The state equation of the system is

(S)


ẋ(t) = f (x(t)) +

l∑
i=1

ui (t)gi (x(t)) t ∈ [t0,T ]

x(t0) = x0.

We define the cost functional (or payoff functional)

Jt0 [x(·), u(·)] =
∫ T

t0

G (x(t)) + uT (t)Ru(t)dt + h(x(T )) , u(·) ∈ Ut0 ,

where Ut0 = {u : [t0,T ]→ Rl , measurable} and R is a positive definite
matrix.

The goal is to minimize Jt0 over the trajectory/control pairs of (S).
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Our framework

However, we assume as known just the functions g1, . . . , gl , while the drift
f is unknown. This leads to the optimal control

(OC )N



minimize

∫
X
Jt0 [xf (·), u(·)]pN(df )

over the (x , u) s.t.

ẋ(t) = f (x(t)) +
l∑

i=1

ui (t)gi (x(t)) t ∈ [t0,T ]

x(t0) = x0.

Here, pN(df ) is a probability measure defined on X ⊂ C 0(Rn)
(constructed at the N-th episode).
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Research question: (Falcone - P. - Pesare, ’21), (P. -
Pesare- Scarinci, ’25)

Suppose that the real, underlying, physical system is

(Ŝ)


ẋ(t) = f̂ (x(t)) +

l∑
i=1

ui (t)gi (x(t)) t ∈ [t0,T ]

x(t0) = x0.

where f̂ is the real drift. Assume that f̂ ∈ X and that pN ⇁ δf̂ (that is,
pN weakly converges to δf̂ ).

Then what does it happen to the optimal controls?
Here we will tackle the more general case in which pN ⇁ p̂ for a generic p̂.
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Standing Assumptions

H1) For all f ∈ X ⊂ C 0(Rn), exist Lf ,Mf s.t.

|f (x)− f (y)| ≤ Lf |x − y |, for all x , y ∈ Rn

and
|f (x)| ≤ Mf (1 + |x |), for all x ∈ Rn;

H2) For g : Rn →Mn×l , exist Lg ,Mg s.t.

||g(x)− g(y)|| ≤ Lg |x − y |, for all x , y ∈ Rn

and
||g(x)|| ≤ Mg (1 + |x |) for all x ∈ Rn;

H3) G : Rn → R, h : Rn → R are bounded below and continuous.

H4) R ∈Ml×l is positive definite.
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A first convergence result (P. - Pesare- Scarinci, ’25)

Theorem (Γ-convergence): Let the “Standing Assumptions” be
satisfied. Assume that pN ⇁ p̂. Then, for each s ∈ [0,T ] and x0 ∈ Rn,
the sequence of functionals FN : (L2

(
[s,T ],Rl

)
, τw )→ R defined as

FN(u) :=

∫
X

[∫ T

s
G (xf (t; u))dt

]
dpN(f ) +

∫ T

s
u(t)TRu(t)dt

Γ-converges to F̂ : (L2
(
[s,T ],Rl

)
, τw )→ R defined as

F̂ (u) :=

∫
X

[∫ T

0
G (xf (t; u))dt

]
dp̂(f ) +

∫ T

0
u(t)TRu(t)dt.
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Implications of the Γ-convergence

I1) Take a sequence of minimizers uN ∈ U to the optimal control problem
(OC )N . If û is a cluster point of {uN}N∈N (with resepct to the weak

convergence in L2([s,T ],U), then û is a minimizer of ˆ(OC ).

I2)

Vp̂(s, x0) = lim sup
N→∞

VpN (s, x0), for all (s, x0) ∈ [0,T ]× Rn

where Vp̂ is the value function of ˆ(OC ) and VpN is the value function
of (OC )N
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A stronger result on the value functions’ convergence
(Pesare-P.-Falcone, ’21)

Theorem: Given the sequence {pN}, assume that W1(p
N , p̂)→ 0. We

use VpN and Vp̂ to denote the value function for the average problem with

pN and p̂ respectively.

Then, for each K ⊂ [0,T ]× Rn compact,

VpN → Vp̂ uniformly in K for N →∞,

and, in particular

||VpN − Vp̂||∞,K ≤ CKW1(p
N , p̂)

with CK positive constant depending just on the set K .
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Necessary conditions of optimality for ˆ(OC )

(D): Assume that X ⊂ C 1(Rn;Rn), X complete metric space and
that g ,G , h are mappings of class C 1.

Theorem: Let {(x̂f , û)(·) : f ∈ X} be a minimizer for ˆ(OC ). Assume the
Standing Assumptions and (D). Then, there exists a function
λf ∈W 1,1([s,T ];Rn) for all f ∈ X s.t.

û(t) = R−1

∫
X
g(x̂f (t))

Tλf (t) dp̂(f ) for all t ∈ [s,T ] ;

−λ̇f (t) =

(
Jx f (x̂f (t)) +

l∑
i=1

ûi (t) Jxgi (x̂f (t))

)T

λf (t)−∇xG (x̂f (t))

a.e. t ∈ [s,T ], for all f ∈ supp(p̂) ,

−λf (T ) = ∇xh(x̂f (T )) for all f ∈ supp(p̂) .

Michele Palladino (UnivAq) Optimal Control and RL 28/04/2025 20 / 28



Convergence of the multipliers

Theorem: Assume the “Standing Assumptions” and (D).
Consider {pN} sequence of measures such that

pN ⇁ p̂.

Suppose that uN(·) is the optimal control of (OC )N and is converging

weakly in L2([s,T ];Rl) to û(·). Then û(·) is optimal for ˆ(OC ).

Furthermore a cluster point of any sequence of adjoint variables
{λN

f : f ∈ X}N∈N related to
{
(xNf , uN)(·) : f ∈ X

}
is an adjoint arc for

{(x̂f , û)(·) : f ∈ X}, implying that uN(·)→ û(·) uniformly in [s,T ].
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Comments

The previous theorem requires knowing the minimizers uN to be
applied (not very convenient...);

This is due to the fact that the problem is nonlinear, hence there are
several minimizers as well as extremals that are not minimizers;

A natural question is then to provide conditions such that, if we take
{(x̂f , û) : f ∈ X} satisfying the necessary conditions, then

{(x̂f , û) : f ∈ X} is a minimizer for ˆ(OC ).

In this case, the previous theorem provides a way to find sub-optimal
controls.
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Sufficient Conditions

Call

H(xf , λf ) =max
u∈Rl

{∫
X
(λf · (f (xf ) + g(xf ) · u)− G (xf )) p̂(df )− uTRu

}
(
=

∫
X

(
f (xf )

Tλf − G (xf )
)
p̂(df )

)
.

(CC) Assume that xf 7→ H(xf , λf ) is concave for all λf , while the map
x 7→ h(x) is convex.

Theorem: Assume the “Standing Assumptions”, (D) and (CC). Take
{(x̂f , û)(·) : f ∈ X} feasible process such that the Necessary Conditions

hold true. Then {(x̂f , û)(·) : f ∈ X} is a global minimizer for ˆ(OC ).
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Comments

Suppose that the real, underlying, physical system is

(Ŝ)


ẋ(t) = f̂ (x(t)) +

l∑
i=1

ui (t)gi (x(t)) t ∈ [t0,T ]

x(t0) = x0.

where f̂ is the real drift and that pN ⇁ δf̂ (that is, pN weakly converges
to δf̂ ).
Condition (CC) reads as

x 7→ H(x , λ) = f̂ (x)Tλ− G (x)

is concave for each λ. Notice that, in RL, G is a design function...
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Special case: Linear Quadratic Regulator
(Pesare-P.-Falcone ’21)

Consider the state dynamics:

ẋA(t) = AxA(t) + Bu(t), x(0) = x0 (0.1)

State vector: xA ∈ Rn State matrix: A ∈ Ω ⊂Mn×n unknown

Control vector: u ∈ Rl Control matrix: B ∈Mn×l

Quadratic cost:

min
u∈U

{
1

2

∫
Ω

(∫ T

0
xA(s)

TQxA(s) + uT (s)Ru(s) ds + xTA (T )GxA(T )

)
p(dA)

}
Q,G ∈Mn×n, symmetric, semipositive definite (Q, G ≥ 0),
R ∈Ml×l symmetric, positive definite (R > 0).

Michele Palladino (UnivAq) Optimal Control and RL 28/04/2025 25 / 28



LQR Framework

p is a measure over the compact set of matrices Ω;

The set of possible dynamics is

X := {f : Rn × Rm → Rn : f (x , u) = Ax + Bu, A ∈ Ω, u ∈ U}.

p can be regarded as a measure over X ;

p tracks the belief that an agent has on the dynamics.

Remark: In the LQR setting, the optimal policy is a linear feedback
control!
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Conclusions and Open questions

We presented a mathematical framework able to justify certain
model-based RL approaches

We showed certain convergence properties of the optimal controls
(optimal policies, in the RL language)

Open question: Stability analysis for Hamilton-Jacobi Equations

Open question: Convergence result for Riccati equations;

Open question: Convergence results for the control constrained case.

Open question: Applications to PDEs.

Thanks for your attention!
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