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A. Porretta Diffusion effects in optimal transport and mean-field models



Optimal transport <> Machine learning

@ OT used to match two given configurations (probabilities)
~» computational optimal transport, Sinkhorn algorithm...[Cuturi '13],
[Benamou,Carlier,Cuturi,Nenna.Peyré "15],[Cuturi-Peyré '16, '20...]...

@ Use of Wasserstein distance as loss function in supervised learning
[Courty- Flamary], [Frogner, Zhang + al], [Perrot+ al '16]...
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Optimal transport <> Machine learning

@ OT used to match two given configurations (probabilities)
~» computational optimal transport, Sinkhorn algorithm...[Cuturi '13],
[Benamou,Carlier,Cuturi,Nenna.Peyré "15],[Cuturi-Peyré '16, '20...]...

@ Use of Wasserstein distance as loss function in supervised learning
[Courty- Flamary], [Frogner, Zhang + al], [Perrot+ al '16]...

Key- points:
@ regularization of Wasserstein distance

@ geometric properties of transport

In this talk, we discuss dynamical OT models, which:

(i) regularize Wasserstein geodesics

(i) penalize congestion effects

(iii) enhance diffusivity (at different levels, Eulerian & Lagrangian)
~> link with quasilinear elliptic equations

~~ finite Vs infinite speed of support propagation
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Dynamical Optimal Transport pbs:

{atm — div(vm)=0  in(0,1)x Q,
m(0) = mg,m(1) = m

(m,v) — min E(m,v) = /01/Q;|v|2dm—|—/01/Q F(m)
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Dynamical Optimal Transport pbs:

m(0) = mg,m(1) = m

(m,v) — min &(m,v) = /()1/Q;|v|2dm+/ol/ﬂ F(m)

@ F convex, superlinear ~ concentrations are penalized

{atm— div(vm)=0  in(0,1) x Q,

@ Two main cases:

(i) F(m)=m**? 6 >0
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Dynamical Optimal Transport pbs:

{atm — div(vm)=0  in(0,1)x Q,
m(0) = mg,m(1) = m

(m,v) — min E(m,v) = /01/Q;|v|2dm—|—/01/Q F(m)

@ F convex, superlinear ~ concentrations are penalized
@ Two main cases:
(i) F(m)=m**? 6 >0
(i) F(m) = m(log(m) + V)  ~ entropic perturbation of OT

E(m,v) = /01/9 % v|>dm + eH(m/ )

7—[(m/g):f&fQ log (d—’g) dm ~ relative entropy w.r.t. o = e~ V()dx
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Dynamical Optimal Transport pbs:

{atm — div(vm)=0  in(0,1)x Q,
m(0) = mg,m(1) = m

(m,v) — min &(m,v) = /()1/Q;|v|2dm+/ol/ﬂ F(m)

@ F convex, superlinear ~ concentrations are penalized
@ Two main cases:
(i) F(m)=m**? 6 >0
(i) F(m) = m(log(m) + V)  ~ entropic perturbation of OT

E(m,v) = /01/9 % v|>dm + eH(m/ )

7—[(m/g):f(ilfQ log (Z—Z) dm ~~ relative entropy w.r.t. o = e~ V()dx

@ Here: suppose that € is a compact manifold without boundary
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Motivations:

@ congestion models in fluid dynamics, traffic flow, etc...

~~ variants of [Benamou-Brenier '00] formulation
[Buttazzo, Jimenez, Oudet '09], [Benamou-Carlier-Santambrogio '17],
[Lavenant-Santambrogio 18], ...
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@ congestion models in fluid dynamics, traffic flow, etc...
~~ variants of [Benamou-Brenier '00] formulation

[Buttazzo, Jimenez, Oudet '09], [Benamou-Carlier-Santambrogio '17],
[Lavenant-Santambrogio 18], ...

@ Mean-Field Control & Mean-Field Game theory
[Lasry-Lions '06], [Cardaliaguet-Meszaros-Santambrogio’16], [Orrieri-P.-Savaré
'19], [Graber-Meszaros-Silva-Tonon '20], [Gomes +al '21], [Di Francesco +al]...
~ coupling Hamilton-Jacobi & density equations
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Motivations:

@ congestion models in fluid dynamics, traffic flow, etc...
~~ variants of [Benamou-Brenier '00] formulation

[Buttazzo, Jimenez, Oudet '09], [Benamou-Carlier-Santambrogio '17],
[Lavenant-Santambrogio 18], ...

@ Mean-Field Control & Mean-Field Game theory
[Lasry-Lions '06], [Cardaliaguet-Meszaros-Santambrogio’16], [Orrieri-P.-Savaré
'19], [Graber-Meszaros-Silva-Tonon '20], [Gomes +al '21], [Di Francesco +al]...
~ coupling Hamilton-Jacobi & density equations

Particles are rational agents ~» dyn. states {&;(s)}s
- - : tE ()
Value function of the generic agent: u(t,x) := inf = (us)
E(t)=x J¢ 2
where {p:} is the supposed distribution law of particles.

—0pu+ 3|Dul?® = f(m),

Nash equilibria — MFG system: :
O¢rm — div(mDu) =0,
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Optimality system

o MFG system ~ optimality system of OT functional

—0pu+ 3|Du? = f(m), (t,x) € (0,1) x Q
Orm — div(mDu) =0, (t,x) € (0,1) x Q (1)
m(o):m07m(]‘):mla XGQ,
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Optimality system

o MFG system ~ optimality system of OT functional

—0pu+ 3|Du? = f(m), (t,x) €(0,1) x Q
Orm — div(mDu) =0, (t,x) € (0,1) x Q (1)
m(0) = mg, m(1) = my, x€Q,

If f is increasing, then (u, m) solves (1) < (m, Du) is a minimum of

{i*(’g)_:d;‘;f‘,’n”g)::oml %(Tylg E(m,v) _// =|vl dm—I—// F(m)
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o MFG system ~ optimality system of OT functional
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Proof [Benamou-Brenier]: if v — w = mv, then £ is convex in (m, w)
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Optimality system

o MFG system ~ optimality system of OT functional

—0pu+ 3|Du? = f(m), (t,x) €(0,1) x Q
Orm — div(mDu) =0, (t,x) € (0,1) x Q (1)
m(0) = mg, m(1) = my, x€Q,

If f is increasing, then (u, m) solves (1) < (m, Du) is a minimum of
drm — div (vm) =0 // 1 //
{m(O) =mo,m(1) =m = (T,"’) E(m, v) lv|2dm + F(m)

Proof [Benamou-Brenier]: if v — w = mv, then £ is convex in (m, w)

Rigorous statement: goes through weak solutions and relaxed minima

A. Porretta Diffusion effects in optimal transport and mean-field models



Optimality system

o MFG system ~ optimality system of OT functional

—0pu+ 3|Du? = f(m), (t,x) €(0,1) x Q
Orm — div(mDu) =0, (t,x) € (0,1) x Q (1)
m(0) = mg, m(1) = my, x€Q,

If f is increasing, then (u, m) solves (1) < (m, Du) is a minimum of
drm — div (vm) =0 // 1 //
{m(O) =mo,m(1) =m = (T,"’) E(m, v) lv|2dm + F(m)

Proof [Benamou-Brenier]: if v — w = mv, then £ is convex in (m, w)

Rigorous statement: goes through weak solutions and relaxed minima

Rmk: Classical OT ~» mis the geodesic, u(0), u(1) are Kantorovich
potentials
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Uncovering diffusivity (Part 1) ~ PL Lions' idea (Mean Field Games)

A. Porretta i on effects in optimal transport and mean-field models



Uncovering diffusivity (Part 1) ~ PL Lions' idea (Mean Field Games)

f increasing
%

1 1
—0u + §|Du\2 = f(m) = f Y0+ §|Du|2)
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Uncovering diffusivity (Part 1) ~ PL Lions' idea (Mean Field Games)

f increasing
%

1 1
—O0ru + §|Du\2 = f(m) = f Y (—0,u+ §|Du|2)

— a second order eqn on u [in (¢, x)]

m=f"Y—0u+ %|Du\2)
Orm = div (mDu)
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Uncovering diffusivity (Part 1) ~ PL Lions' idea (Mean Field Games)

f increasing
%

1 1
—O0ru + §|Du\2 = f(m) = f Y (—0,u+ §|Du|2)

— a second order eqn on u [in (¢, x)]

m=f"Y—0u+ %|Du\2)
Orm = div (mDu)

in divergence form ~»  div (; ) (®(x,Du)) =0
where D := (0, Dy).
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Uncovering diffusivity (Part 1) ~ PL Lions' idea (Mean Field Games)

f increasing
%

1 1
—O0ru + §|Du\2 = f(m) = f Y (—0,u+ §|Du|2)

— a second order eqn on u [in (¢, x)]

m=f"Y—0u+ %|Du\2)
Orm = div (mDu)

in divergence form ~»  div (; ) (®(x,Du)) =0

where D := (9, Dy). Expanded in non divergence form as

—tr(ADzu) =0, A= Ag+ Ay

1 —Du 0 0
Ao = (—Du Du® Du) » A= (0 (mf’(m))ld)

in a cylindrical d + 1 domain (0,1) x Q.
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Uncovering diffusivity (Part 1) ~ PL Lions' idea (Mean Field Games)

f increasing
%

1 1
—O0ru + §|Du\2 = f(m) = f Y (—0,u+ §|Du|2)

— a second order eqn on u [in (¢, x)]

m=f"Y—0u+ %|Du\2)
Orm = div (mDu)

in divergence form ~»  div (; ) (®(x,Du)) =0

where D := (9, Dy). Expanded in non divergence form as

—tr(ADzu) =0, A= Ag+ Ay

1 —Du 0 0
Ao = (—Du Du® Du) » A= (0 (mf’(m))ld)

in a cylindrical d + 1 domain (0,1) x Q.

e Note: the ellipticity degenerates when m = 0, unless f'(m)m > 0
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PL Lions' approach:

—Oeu + 3|Dul?® = f(m)

(u, m) solve (classically) {8tm "~ div(mDu) = 0.

m = f~}(—8;u+ 3|Dul?)
<~
—tr (Ao D?u) — f'(m)mAu=0
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PL Lions' approach:

—Oeu + 3|Dul?® = f(m)

(u, m) solve (classically) {8tm "~ div(mDu) = 0.

m = f~}(—8;u+ 3|Dul?)
<~
—tr (Ao D?u) — f'(m)mAu=0

e m(0) = mp, m(1) = m; ~> a nonlinear Neumann condition

1 1
Oru = §|Dul2 —f(mo) | 5 Ou= §\DU|2 —f(m) |

t=0 t=1
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PL Lions' approach:

—Oeu + 3|Dul?® = f(m)

(u, m) solve (classically) {8tm _ div(mDu) 0.

m= f~}(—0su+ %|Du|2)
<~
—tr (Ao D?u) — f'(m)mAu=0

e m(0) = mp, m(1) = m; ~> a nonlinear Neumann condition

1 1
Oru = §|Dul2 —f(mo) | 5 Ou= 5\Du|2 —f(m) |

t=0 t=1
@ Entropy case: = e log m ~ elliptic regularization in x
—tr (Ao D2u) —ecAu=0

Rmk: m = exp(—d;u + %|Dul?) is bdd below <+ u is Lipschitz
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PL Lions' approach:

—Oeu + 3|Dul?® = f(m)

(u, m) solve (classically) {8tm _ div(mDu) 0.

m= f~}(—0su+ %|Du|2)
<~
—tr (Ao D?u) — f'(m)mAu=0

e m(0) = mp, m(1) = m; ~> a nonlinear Neumann condition

1 1
Oru = §|Dul2 —f(mo) | 5 Ou= §\DU|2 —f(m) |

t=0 t=1
@ Entropy case: = e log m ~ elliptic regularization in x
—tr (Ao D2u) —ecAu=0
Rmk: m = exp(—d;u + %|Dul?) is bdd below <+ u is Lipschitz

Rmk2: u is the minimum of folfe%wu‘z_af“dxdt
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Lions'strategy ~~ Quasilinear elliptic equations ~~ gradient bounds
[Lions '10, Munoz '22, P. '22]

If uis a classical solution to

—tr (Ao(x, Du) D?u) — f'(m)m Au=0
+ OT boundary conditions (nonlinear Neumann)
then
[Dulloc < K(1 4 [Julloc) -

where K depends on: [[£(mo)|[ws.~, |£(m)llwa.< |Vl wa., [ mlloc and
lower bound of f'(m)m
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Lions'strategy ~~ Quasilinear elliptic equations ~~ gradient bounds
[Lions '10, Munoz '22, P. '22]

If uis a classical solution to

—tr (Ao(x, Du) D?u) — f'(m)m Au=0
+ OT boundary conditions (nonlinear Neumann)
then
[Dulloc < K(1 4 [Julloc) -

where K depends on: [[£(mo)|[ws.~, |£(m)llwa.< |Vl wa., [ mlloc and
lower bound of f'(m)m

@ Main application: provides smooth solutions for positive marginals
and f’(m)m bounded below
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Lions'strategy ~~ Quasilinear elliptic equations ~~ gradient bounds
[Lions '10, Munoz '22, P. '22]

If uis a classical solution to

—tr (Ao(x, Du) D?u) — f'(m)m Au=0
+ OT boundary conditions (nonlinear Neumann)

then
[Dulloc < K(1+ flullo) -

where K depends on: [[£(mo)|[ws.~, |£(m)llwa.< |Vl wa., [ mlloc and
lower bound of f'(m)m

@ Main application: provides smooth solutions for positive marginals
and f’(m)m bounded below

e Extends to noncompact domains by using the relative entropy w.r.t.
0= e Vdx, with D2V > Yo lg, 0 >0
~~ Gaussian-like measures in RY (mg, m;: m;e" bdd below, above)
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Uncovering diffusivity (Part Il) ~~ displacement convexity
(Eulerian mode, [Gomes-Seneci '18, P. '22])
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Uncovering diffusivity (Part Il) ~~ displacement convexity
(Eulerian mode, [Gomes-Seneci '18, P. '22])

If (u, m) is classical sol. of

{—Gtu + 3|Dul> = f(m) in Qr, 2)

Orm — div (mDu) =0 in Qr,

dtz/U /U”(m)mf’(m)|Dm|2

for any convex U: U"(r)r — (1 — 3)[U'(r)r— U(r)] > 0
(Ex: U=rP,rlogr etc...)
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Uncovering diffusivity (Part Il) ~~ displacement convexity
(Eulerian mode, [Gomes-Seneci '18, P. '22])

If (u, m) is classical sol. of

{_6tu + %‘DU|2 = f(m) in QT; (2)

Orm — div (mDu) =0 in Qr,

dtz/U /QU”(m)mf’(mNDmlz

for any convex U: U"(r)r — (1 — 3)[U'(r)r— U(r)] > 0
(Ex: U=rP,rlogr etc...)

e extends classical results [Mc Cann '97] known for Wasserstein geodesics
~> used to estimate LP norms of m(t)
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~ LY — L™ regularizing effect

dt2/Um(t /QU”(m)wme

ellipticity

Theorem (Lavenant-Santambrogio '18, P. '22)

Assume f'(s)s > \g for s large. Then m satisfies

[m(t)lloc < K(E™*+(1-1)7%)

for some o > 0.
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~ LY — L™ regularizing effect

dt2/ U(m(t)) /U” ymf'( )|Dm|2

elllptlmty

Theorem (Lavenant-Santambrogio '18, P. '22)

Assume f'(s)s > \g for s large. Then m satisfies
[m(t)lloc < K(E™*+(1-1)7%)
for some o > 0.

Proof: U(m) = mP

d2/
— mt"z)\o/mF’_sz2
o [ mep =2 [ me=iom
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~ LY — L™ regularizing effect

dt2/Um(t /QU”(m)me”(ﬂme|2

ellipticity

Theorem (Lavenant-Santambrogio '18, P. '22)

Assume f'(s)s > \g for s large. Then m satisfies
[m(t)lloc < K(E™*+(1-1)7%)
for some o > 0.

Proof: U(m) = mP

d2 1+ﬁ
ﬁ/ m(t)"z)\o/m"’_2|Dm|2 Zc(/ mp) —c/ mP
t“ Ja Q Q Q

by Sobolev-Wirtinger inequality.
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~ LY — L™ regularizing effect

dt2/ U(m(t)) /U” ymf'( )|Dm|2

elllptlmty

Theorem (Lavenant-Santambrogio '18, P. '22)

Assume f'(s)s > \g for s large. Then m satisfies
[m(t)lloc < K(E™*+(1-1)7%)
for some o > 0.

Proof: U(m) = mP

d2 1+ﬁ
ﬁ/ m(t)"z)\o/m"’_2|Dm|2 Zc(/ mp) —c/ mP
t“ Ja Q Q Q

by Sobolev-Wirtinger inequality. Then

o(t) == / m(t)P satisfies — " + cu,pHd(Pz—l) <Cyp
Ja

~ () < C(EA (1 —t))~de=D)
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Model problem:

{Otm— div(vm)=0  in Q:=(0,1)x Q,
m(0) = mg, m(1) = my

1,9 1
— E(m,v) ::// §|V|2dm+//log <C:1m> dm, 0=e VMdx
0/a 0/Q 0
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Model problem:

{Otm— div(vm)=0  in Q:=(0,1)x Q,
m(0) = mg, m(1) = my

1,9 1
— E(m,v) ::// §|V|2dm+//log <C:1m> dm, 0=e VMdx
0/a 0/Q 0

o mo,my € L{(Q)NP(Q), V € W2>(Q)
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Model problem:

{Otm— div(vm)=0  in Q:=(0,1)x Q,
m(0) = mg, m(1) = my

= E(m,v) = // [v] dm+//|og<d> 0=e VMdx
0

o mo,my € L{(Q)NP(Q), V € W2>(Q)

Theorem (Bocchi - P. '24)

There exists a unique minimizer, which is the unique weak sol. (m,Vu)
of Opt. System, and we have:

(i) m>0a.e. in(0,1) x Q.
(i) uym e L2 ((0,1) x Q) and u(0) € LY(dmg), u(1) € L*(dmy).

(iii) if mg, my € WH°°(Q) with mg, my > 0, then
Ve Che(M)= ue Ckha me Che,
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Model problem:

m(0) = mg, m(1l) = my

= E(m,v) = // [v] dm+//|og<d> 0=e VMdx
0

o mo,my € L{(Q)NP(Q), V € W2>(Q)

{Otm— div(vm)=0  in Q:=(0,1)x Q,

Theorem (Bocchi - P. '24)

There exists a unique minimizer, which is the unique weak sol. (m,Vu)
of Opt. System, and we have:
(i) m>0a.e. in(0,1) x Q.
(i) uym e L2 ((0,1) x Q) and u(0) € LY(dmg), u(1) € L*(dmy).
(iii) if mg, my € WH°°(Q) with mg, my > 0, then
Ve Che(M)= ue Ckha me Che,

e Here Q is compact with Ric(Q2) bounded below.
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Model problem:

m(0) = mg, m(1l) = my

= E(m,v) = // [v] dm+//|og<d> 0=e VMdx
0

o mo,my € L{(Q)NP(Q), V € W2>(Q)

{Otm— div(vm)=0  in Q:=(0,1)x Q,

Theorem (Bocchi - P. '24)

There exists a unique minimizer, which is the unique weak sol. (m,Vu)
of Opt. System, and we have:
(i) m>0a.e. in(0,1) x Q.
(i) uym e L2 ((0,1) x Q) and u(0) € LY(dmg), u(1) € L*(dmy).
(iii) if mg, my € WH°°(Q) with mg, my > 0, then
Ve Che(M)= ue Ckha me Che,

e Here Q is compact with Ric(Q2) bounded below.

e Needs to use weak solutions and relaxed formulations from MFG theory
([Cardaliaguet-Graber '15], [Orrieri-P.-Savare '19]..)
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Regularization by entropy

@ We can use the additional entropy to regularize the Wasserstein
geodesic
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Regularization by entropy

@ We can use the additional entropy to regularize the Wasserstein
geodesic (warning: different from entropic transport)
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Regularization by entropy

@ We can use the additional entropy to regularize the Wasserstein
geodesic (warning: different from entropic transport)

(i) consider an entropic perturbation of optimal transport:

e(mv) = [ / > Ivi2dm + = H(m/o)

and approximate mg, my with strictly positive, smooth marginals
(e.g. use heat semigroup)
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Regularization by entropy

@ We can use the additional entropy to regularize the Wasserstein
geodesic (warning: different from entropic transport)

(i) consider an entropic perturbation of optimal transport:

1
1
E(m,v) = // ~ |v|*dm 4+ H(m/ o)
0Ja 2
and approximate mg, my with strictly positive, smooth marginals
(e.g. use heat semigroup)
(i) 3 smooth solutions u®, m*®

(iii) Previous estimates are fully justified for u, m* and stable as
e—0
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Regularization by entropy

@ We can use the additional entropy to regularize the Wasserstein
geodesic (warning: different from entropic transport)

(i) consider an entropic perturbation of optimal transport:

1
1
E(m,v) = // ~ |v|*dm 4+ H(m/ o)
0Ja 2
and approximate mg, my with strictly positive, smooth marginals
(e.g. use heat semigroup)
(i) 3 smooth solutions u®, m*®

(iii) Previous estimates are fully justified for u, m* and stable as
e—0

@ Convergence to Wasserstein geodesic:
min&. = Wa(mg, my)? + r.

where r. = O(e) if mg, my have finite entropy, if not r. = O(elloge]).
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Regularization by entropy

@ We can use the additional entropy to regularize the Wasserstein
geodesic (warning: different from entropic transport)

(i) consider an entropic perturbation of optimal transport:

1
1
E(m,v) = // ~ |v|*dm 4+ H(m/ o)
0Ja 2
and approximate mg, my with strictly positive, smooth marginals
(e.g. use heat semigroup)
(i) 3 smooth solutions u®, m*®

(iii) Previous estimates are fully justified for u, m* and stable as
e—0

@ Convergence to Wasserstein geodesic:
min&. = Wa(mg, my)? + r.
where r. = O(e) if mg, my have finite entropy, if not r. = O(elloge]).

~» m° converges to the Wasserstein geodesic, u® converges
uniformly to the Kantorovich potential

A. Porretta Diffusion effects in optimal transport and mean-field models



In search of diffusivity (Part Ill) ~~ slow diffusion & free boundary
[with P. Cardaliaguet & S. Munoz]
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= m(t) remains with compact support

~» formation of a free boundary

A. Porretta Diffusion effects in optimal transport and mean-field models



In search of diffusivity (Part Ill) ~~ slow diffusion & free boundary
[with P. Cardaliaguet & S. Munoz]

Model case: kinetic energy + power-type congestion [f(m) = m’|

—0pu+ 3|Dul? = m’, 6>0

Orm— div (mDu) =0

m(0) = mg, m(T)=m
Qn: What happens to solutions with compactly supported marginals 7
~ finite speed of propagation: mgy with compact support

= m(t) remains with compact support

~» formation of a free boundary

Rmk: the behavior is reminiscent of porous medium diffusion

(not surprising: porous medium equation is the associated gradient flow!)
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Self-similar solutions

—0iu + %|Du|2 =m’
Orm — div (mDu) =0

~ 3 self-similar solutions with compact support m = t~*¢(|x|/t~):

a-a) ()2}’
—a a(l—a X 2
(d=1) m=t (R— 2 (tm)> T34

+

with R such that [ ¢ =1,
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Self-similar solutions

—0iu + %|Du|2 =m’
Orm — div (mDu) =0

~ 3 self-similar solutions with compact support m = t~*¢(|x|/t~):

a-a) ()2}’
—a a(l—a X 2
(d=1) m=t (R— 2 (tm)> T34

+

with R such that [ ¢ =1,
and u = fozlxl + ¢(t) in the support of m, with ¢’(t) = —Rt—20/(2+0)

@ m is very similar to the Barenblatt solution for porous media !!

A. Porretta Diffusion effects in optimal transport and mean-field models



Self-similar solutions

—0iu + %|Du|2 =m’
Orm — div (mDu) =0

~ 3 self-similar solutions with compact support m = t~*¢(|x|/t~):

a-a) ()2}’
—a a(l—a X 2

with R such that [ ¢ =1,
and u = ,a% + c(t) in the support of m, with ¢/(t) = —Rt—20/(2+9)

@ m is very similar to the Barenblatt solution for porous media !!
@ m connects a Dirac mass with a compactly supported bump function

@ The support propagates with finite speed, m is only Holder
continuous

@ the free boundary spreads outward with speed t®
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fim(t, x))

f(m(x, 1))

@ Thanks to the self-similar solution, we can characterize the transport
of Dirac masses: (d = 1) There exists a unique solution of

—up + 3|uy > = m? in(0,T) xR

my — (muy)x =0 in(0,T) xR

m(0) = b, m(T) =my

such that t*m(t, t“x) s (in suitable sense)
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fim(t, x))

f(m(x, 1))

@ Thanks to the self-similar solution, we can characterize the transport
of Dirac masses: (d = 1) There exists a unique solution of

—u+ 3uP=m’  in(0,T)xR
my — (muy)x =0 in(0,T) xR
m(0) = do, m(T) =m

such that t*m(t, t“x) s (in suitable sense)
@ The self-similar solution gives the prototype behavior of the

free-boundary evolution
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A. Porretta




Analysis of the free boundary (one-dimensional case)

@ mg, m are bump-like functions

{mo > 0} = (a0, bo), {my >0} = (a1, b1)

e mf is Lipschitz and semi-convex, and mg(x) = ¢ dist(x, {ao, bo})”
for some 3, co > 0 (+ similar conditions on my)
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Analysis of the free boundary (one-dimensional case)

@ mg, m are bump-like functions

{mo > 0} = (a0, bo), {my >0} = (a1, b1)

e mf is Lipschitz and semi-convex, and mg(x) = ¢ dist(x, {ao, bo})”
for some 3, co > 0 (+ similar conditions on my)

Preliminary: under the above conditions, the system

—0pu + S|uy|? = m?
Orm — div (muy) =0
m(0) =mg, m(T)=m

admits a (unique) solution (u, m) with m continuous and u Lipschitz.

~»  Free boundary: 9{m(t) > 0}
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Flow of optimal trajectories (characteristics)
The function « : [ag, bo] % [0, T] — R defined by
'7() = _ux(r}/(')7 )
7(0) = x

describes the optimal trajectory for a player starting at x at time t =0
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~+ we prove that v([ag, bo]) = [a1, b1] and the free- boundary curves are
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Flow of optimal trajectories (characteristics)
The function « : [ag, bo] % [0, T] — R defined by
'7() = _ux(r}/(')7 )
7(0) = x
describes the optimal trajectory for a player starting at x at time t =0

~+ we prove that v([ag, bo]) = [a1, b1] and the free- boundary curves are

ﬁl'/L(t) = ’7(307 t) ) "/R(t) = f\//(bOa t)

@ v(x, t) is well-defined, globally Lipschitz in (ag, by) % [0, T], 7x > 0
{m >0} ={(x,t) e R x [0, T]:v.(t) < x < yr(t)}

~> 7y1,Yr are Lipschitz curves
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Flow of optimal trajectories (characteristics)
The function « : [ag, bo] % [0, T] — R defined by
7() = —UX(’Y('), )
7(0) = x
describes the optimal trajectory for a player starting at x at time t =0

~+ we prove that v([ag, bo]) = [a1, b1] and the free- boundary curves are

“/"L(t) = ’7(307 t) ) "/’R(t) = f\//(bOa t)

@ v(x, t) is well-defined, globally Lipschitz in (ag, by) % [0, T], 7x > 0
{m >0} ={(x,t) e R x [0, T]:v.(t) < x < yr(t)}

~> 7y1,Yr are Lipschitz curves
@ 7 is a classical solution in (ag, bg) x (0, T') of the elliptic equation

9mg _ (mg)x

Yee + (’YX)2+0,.YXX - (%)He X € (aOa bO)a te (07 T)
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To get more regularity of the free boundary, we assume further:

(m3)x <0 for x near J[a, b]

Important: this condition implies (m§).(ag) > 0 and (m§)x(bo) < 0

~~ a nondegeneracy condition (cfr. the initial pressure in porous media).
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~~ a nondegeneracy condition (cfr. the initial pressure in porous media).

Then:
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o if mg is strictly concave, we have optimal speed of propagation and
long time decay of m:

()=t m(y(x, 1), ) = O(t™)
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To get more regularity of the free boundary, we assume further:

(m$) <0 for x near a, b]

Important: this condition implies (m§).(ag) > 0 and (m§)x(bo) < 0

~~ a nondegeneracy condition (cfr. the initial pressure in porous media).

Then:
e {m > 0} is convex and has a C!! interface

o if mg is strictly concave, we have optimal speed of propagation and
long time decay of m:

()=t m(y(x, 1), ) = O(t™)

@ m, Du are globally Holder continuous
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To get more regularity of the free boundary, we assume further:

(m3)x <0 for x near J[a, b]

Important: this condition implies (m§).(ag) > 0 and (m§)x(bo) < 0

~~ a nondegeneracy condition (cfr. the initial pressure in porous media).

Then:
e {m > 0} is convex and has a C!! interface

o if mg is strictly concave, we have optimal speed of propagation and
long time decay of m:

YOt~ Ct, m(y(x, 1), t) = O(t™)
@ m, Du are globally Holder continuous

e Holder regularity is proved by intrinsic scaling methods.
Key-tool: look at the equation of m? along trajectories

v(t,x) := m?(~(x, t),t) satisfies —(ﬁ) —(Ew), =0
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Comments, perspective topics & works in progress:

@ We discussed OT problems with additive density-dependent costs

(i) embed Wasserstein geodesics into a larger family of more regular
optimal curves

(i) Have different geometric properties of transport, finite Vs infinite
speed of propagation
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Comments, perspective topics & works in progress:

@ We discussed OT problems with additive density-dependent costs

(i) embed Wasserstein geodesics into a larger family of more regular
optimal curves

(i) Have different geometric properties of transport, finite Vs infinite
speed of propagation

(iii) The optimality system is an elliptic equation for u (but second order
in time!)  ~» finite difference schemes, Newton's methods, etc...

o This is different from the entropic Optimal Transport:

penalizing the Fisher information of m ~- leads to fourth order
equation in u
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@ Other congestion models in crowd dynamics of multiplicative type
~» cost of motion is proportional to the density of crowd

. el ‘q‘Q
Model cost: L(m,q) = m* %~
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@ Other congestion models in crowd dynamics of multiplicative type
~~ cost of motion is proportional to the density of crowd

. _ fe% m
Model cost: L(m,q) = m*
— lead to different distances between measures
[Cardaliaguet-Carlier-Nazaret '08], [Dolbeault-Nazaret-Savare'09]
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@ Other congestion models in crowd dynamics of multiplicative type
~» cost of motion is proportional to the density of crowd
) _ o ld?
Model cost: L(m,q) = m* %~
— lead to different distances between measures

[Cardaliaguet-Carlier-Nazaret '08], [Dolbeault-Nazaret-Savare'09]

Optimality system gives different quasilinear elliptic equations

2
—atU—Fl‘Di‘ =0, Dul? x
{3tm - dfv(rr;n@) =0 m= (% 5 ) = i (A(Du)D?u) =0

Formally: the operator is elliptic iff & < 2
(cf. [Lions '10], [Achdou-P. '18]...)

..[more to come ?..]
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@ Other congestion models in crowd dynamics of multiplicative type
~» cost of motion is proportional to the density of crowd
) _ o ld?
Model cost: L(m,q) = m* %~
— lead to different distances between measures

[Cardaliaguet-Carlier-Nazaret '08], [Dolbeault-Nazaret-Savare'09]

Optimality system gives different quasilinear elliptic equations

2
—8tu+l‘Di‘ =0, Dul? x
{3tm - dfv(rr;n@) =0 m= (% 5 ) = i (A(Du)D?u) =0

Formally: the operator is elliptic iff & < 2
(cf. [Lions '10], [Achdou-P. '18]...)

...[more to come ?..]

Thanks for the attention !
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Key-point: the elliptic equation satisfied by

Omg m§ X
it o= e e e 0T)
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Key-point: the elliptic equation satisfied by

Omg m§ X
it o= e e e 0T)

Where does it come from ?

Q 7(x,) is the minimizer of

inf
a€H!, a(t)=x

/t %Iaﬁ +f(m(a, s)) ds + u(a(T), T).
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Key-point: the elliptic equation satisfied by

Omg m§ X
it o= e e e 0T)

Where does it come from ?

Q 7(x,) is the minimizer of

/t %Iaﬁ +f(m(a, s)) ds + u(a(T), T).

inf
a€H!, a(t)=x
~ Yee(x, t) = £/ (m(y(x, t), t))mx(v(x, t), t) (Euler-Lagrange eq.)

Q . (x, t)m(y(x, t), t) = mo(x) (mass transport: m = y;mg)

~ ’yxxm(W(X7 t), t) + (”/x)2mx('7(xv t)? t) = (mO)X
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Key-point: the elliptic equation satisfied by

Omg m§ X
it o= e e e 0T)

Where does it come from ?

Q 7(x,) is the minimizer of

/t %Iaﬁ +f(m(a, s)) ds + u(a(T), T).

inf
a€H!, a(t)=x
~ Yee(x, t) = £/ (m(y(x, t), t))mx(v(x, t), t) (Euler-Lagrange eq.)

Q@ u(x, t)m(v(x,t), t) = mo(x) (mass transport: m = y;mg)
~ ’yxxm(W(X7 t), t) + (”/x)2mx('7(xv t)? t) = (mO)X

0 0
o (Mg )x

(1+2) = ’Ytt-i-(i%%xzw
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