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Optimal transport ↔ Machine learning

OT used to match two given configurations (probabilities)
 computational optimal transport, Sinkhorn algorithm...[Cuturi ’13],

[Benamou,Carlier,Cuturi,Nenna.Peyré ’15],[Cuturi-Peyré ’16, ’20...]...

Use of Wasserstein distance as loss function in supervised learning
[Courty- Flamary], [Frogner, Zhang + al], [Perrot+ al ’16]...

Key- points:

regularization of Wasserstein distance

geometric properties of transport

In this talk, we discuss dynamical OT models, which:

(i) regularize Wasserstein geodesics

(ii) penalize congestion effects

(iii) enhance diffusivity (at different levels, Eulerian & Lagrangian)

 link with quasilinear elliptic equations

 finite Vs infinite speed of support propagation
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Use of Wasserstein distance as loss function in supervised learning
[Courty- Flamary], [Frogner, Zhang + al], [Perrot+ al ’16]...

Key- points:

regularization of Wasserstein distance

geometric properties of transport

In this talk, we discuss dynamical OT models, which:

(i) regularize Wasserstein geodesics

(ii) penalize congestion effects

(iii) enhance diffusivity (at different levels, Eulerian & Lagrangian)

 link with quasilinear elliptic equations

 finite Vs infinite speed of support propagation

A. Porretta Diffusion effects in optimal transport and mean-field models



Optimal transport ↔ Machine learning

OT used to match two given configurations (probabilities)
 computational optimal transport, Sinkhorn algorithm...[Cuturi ’13],

[Benamou,Carlier,Cuturi,Nenna.Peyré ’15],[Cuturi-Peyré ’16, ’20...]...
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Dynamical Optimal Transport pbs:{
∂tm − div (vm) = 0 in (0, 1)× Ω,

m(0) = m0 ,m(1) = m1

(m, v) −→ min E(m, v) :=

∫ 1

0

∫
Ω

1

2
|v |2dm +

∫ 1

0

∫
Ω

F (m)

F convex, superlinear  concentrations are penalized

Two main cases:

(i) F (m) = m1+θ, θ > 0

(ii) F (m) = m(log(m) + V )  entropic perturbation of OT

E(m, v) :=

∫ 1

0

∫
Ω

1

2
|v |2dm + εH(m/%)

H(m/%)=
∫ 1

0

∫
Ω

log
(

dm
d%

)
dm relative entropy w.r.t. % = e−V (x)dx

Here: suppose that Ω is a compact manifold without boundary
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Motivations:

congestion models in fluid dynamics, traffic flow, etc...

 variants of [Benamou-Brenier ’00] formulation
[Buttazzo, Jimenez, Oudet ’09], [Benamou-Carlier-Santambrogio ’17],

[Lavenant-Santambrogio ’18], ...

Mean-Field Control & Mean-Field Game theory
[Lasry-Lions ’06], [Cardaliaguet-Meszaros-Santambrogio’16], [Orrieri-P.-Savaré

’19], [Graber-Meszaros-Silva-Tonon ’20], [Gomes +al ’21], [Di Francesco +al]...

 coupling Hamilton-Jacobi & density equations

Particles are rational agents  dyn. states {ξi (s)}s

Value function of the generic agent: u(t, x) := inf
ξ(t)=x

∫ 1

t

|ξ′(s)|2

2
+f (µs)

where {µt} is the supposed distribution law of particles.

Nash equilibria → MFG system:

{
−∂tu + 1

2 |Du|
2 = f (m) ,

∂tm − div(mDu) = 0 ,
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Optimality system

MFG system ' optimality system of OT functional
−∂tu + 1

2 |Du|
2 = f (m) , (t, x) ∈ (0, 1)× Ω

∂tm − div(mDu) = 0 , (t, x) ∈ (0, 1)× Ω

m(0) = m0 , m(1) = m1 , x ∈ Ω ,

(1)

If f is increasing, then (u,m) solves (1) ⇔ (m,Du) is a minimum of{
∂tm − div (vm) = 0

m(0) = m0 ,m(1) = m1

→ min
(m,v)

E(m, v) :=

∫ 1

0

∫
Ω

1

2
|v |2dm +

∫ 1

0

∫
Ω

F (m)

Proof [Benamou-Brenier]: if v → w = mv , then E is convex in (m,w)

Rigorous statement: goes through weak solutions and relaxed minima

Rmk: Classical OT  m is the geodesic, u(0), u(1) are Kantorovich
potentials
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Uncovering diffusivity (Part I)  PL Lions’ idea (Mean Field Games)

−∂tu +
1

2
|Du|2 = f (m)

f increasing→ m = f −1(−∂tu +
1

2
|Du|2)

{
m = f −1(−∂tu + 1

2 |Du|
2)

∂tm = div (mDu)
−→ a second order eqn on u [in (t, x)]

in divergence form  div (t,x)(Φ(x ,Du)) = 0

where D := (∂t ,Dx). Expanded in non divergence form as

−tr
(
AD2u

)
= 0 , A := A0 +A1

A0 =

(
1 −Du
−Du Du ⊗ Du

)
, A1 =

(
0 0
0 (mf ′(m))Id

)
in a cylindrical d + 1 domain (0, 1)× Ω.

• Note: the ellipticity degenerates when m = 0, unless f ′(m)m > 0
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PL Lions’ approach:

(u,m) solve (classically)

{
−∂tu + 1

2 |Du|
2 = f (m)

∂tm − div(mDu) = 0 ,

⇐⇒

m = f −1(−∂tu + 1
2 |Du|

2)

−tr
(
A0D2u

)
− f ′(m)m∆u = 0

m(0) = m0, m(1) = m1  a nonlinear Neumann condition

∂tu =
1

2
|Du|2 − f (m0) |

t=0
; ∂tu =

1

2
|Du|2 − f (m1) |

t=1

Entropy case: f = ε logm  elliptic regularization in x

−tr
(
A0D2u

)
− ε∆u = 0

Rmk: m = exp(−∂tu + 1
2 |Du|

2) is bdd below ↔ u is Lipschitz

Rmk2: u is the minimum of
∫ 1

0

∫
e

1
2 |Du|2−∂tudxdt
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Lions’strategy  Quasilinear elliptic equations  gradient bounds
[Lions ’10, Munoz ’22, P. ’22]

If u is a classical solution to{
−tr

(
A0(x ,Du)D2u

)
− f ′(m)m∆u = 0

+ OT boundary conditions (nonlinear Neumann)

then
‖Du‖∞ ≤ K (1 + ‖u‖∞) .

where K depends on: ‖f (m0)‖W 1,∞ , ‖f (m1)‖W 1,∞ , ‖V ‖W 2,∞ , ‖m‖∞ and
lower bound of f ′(m)m

Main application: provides smooth solutions for positive marginals
and f ′(m)m bounded below

Extends to noncompact domains by using the relative entropy w.r.t.
% = e−V dx , with D2V ≥ γ0 Id , γ0 > 0
 Gaussian-like measures in Rd (m0,m1: mie

V bdd below, above)
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[Lions ’10, Munoz ’22, P. ’22]

If u is a classical solution to{
−tr
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A0(x ,Du)D2u

)
− f ′(m)m∆u = 0

+ OT boundary conditions (nonlinear Neumann)

then
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Uncovering diffusivity (Part II)  displacement convexity

(Eulerian mode, [Gomes-Seneci ’18, P. ’22])

If (u,m) is classical sol. of{
−∂tu + 1

2 |Du|
2 = f (m) in QT ,

∂tm − div (mDu) = 0 in QT ,
(2)

⇒ d2

dt2

∫
Ω

U(m(t)) ≥
∫

Ω

U ′′(m)m f ′(m)|Dm|2

for any convex U: U ′′(r)r − (1− 1
d )[U ′(r)r − U(r)] ≥ 0

(Ex: U = rp, r log r etc...)

• extends classical results [Mc Cann ’97] known for Wasserstein geodesics
 used to estimate Lp norms of m(t)

A. Porretta Diffusion effects in optimal transport and mean-field models



Uncovering diffusivity (Part II)  displacement convexity

(Eulerian mode, [Gomes-Seneci ’18, P. ’22])

If (u,m) is classical sol. of{
−∂tu + 1

2 |Du|
2 = f (m) in QT ,

∂tm − div (mDu) = 0 in QT ,
(2)

⇒ d2

dt2

∫
Ω

U(m(t)) ≥
∫

Ω

U ′′(m)m f ′(m)|Dm|2

for any convex U: U ′′(r)r − (1− 1
d )[U ′(r)r − U(r)] ≥ 0

(Ex: U = rp, r log r etc...)

• extends classical results [Mc Cann ’97] known for Wasserstein geodesics
 used to estimate Lp norms of m(t)

A. Porretta Diffusion effects in optimal transport and mean-field models



Uncovering diffusivity (Part II)  displacement convexity

(Eulerian mode, [Gomes-Seneci ’18, P. ’22])

If (u,m) is classical sol. of{
−∂tu + 1

2 |Du|
2 = f (m) in QT ,

∂tm − div (mDu) = 0 in QT ,
(2)

⇒ d2

dt2

∫
Ω

U(m(t)) ≥
∫

Ω

U ′′(m)m f ′(m)|Dm|2

for any convex U: U ′′(r)r − (1− 1
d )[U ′(r)r − U(r)] ≥ 0

(Ex: U = rp, r log r etc...)

• extends classical results [Mc Cann ’97] known for Wasserstein geodesics
 used to estimate Lp norms of m(t)

A. Porretta Diffusion effects in optimal transport and mean-field models



 L1 → L∞ regularizing effect

d2

dt2

∫
Ω

U(m(t)) ≥
∫

Ω

U ′′(m)m f ′(m)︸ ︷︷ ︸
ellipticity

|Dm|2

Theorem (Lavenant-Santambrogio ’18, P. ’22)

Assume f ′(s)s ≥ λ0 for s large. Then m satisfies

‖m(t)‖∞ ≤ K (t−α + (1− t)−α)

for some α > 0.

Proof: U(m) = mp

d2

dt2

∫
Ω

m(t)p ≥ λ0

∫
Ω

mp−2|Dm|2 ≥ c

(∫
Ω

mp

)1+ 2
d(p−1)

− c

∫
Ω

mp

by Sobolev-Wirtinger inequality. Then

ϕ(t) :=

∫
Ω

m(t)p satisfies − ϕ′′ + c ϕ1+ 2
d(p−1) ≤ C ϕ

 ϕ(t) ≤ C (t ∧ (1− t))−d(p−1)
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Model problem: kinetic energy + entropy{
∂tm − div (vm) = 0 in Q := (0, 1)× Ω,

m(0) = m0 ,m(1) = m1

→ E(m, v) :=

∫ 1

0

∫
Ω

1

2
|v |2dm +

∫ 1

0

∫
Ω

log

(
dm

d%

)
dm , % = e−V (x)dx

m0,m1 ∈ L1(Ω) ∩ P(Ω), V ∈W 2,∞(Ω)

Theorem (Bocchi - P. ’24)

There exists a unique minimizer, which is the unique weak sol. (m,∇u)
of Opt. System, and we have:

(i) m > 0 a.e. in (0, 1)× Ω.

(ii) u,m ∈ L∞loc((0, 1)× Ω) and u(0) ∈ L1(dm0), u(1) ∈ L1(dm1).

(iii) if m0,m1 ∈W 1,∞(Ω) with m0,m1 > 0, then
V ∈ C k,α(M)⇒ u ∈ C k+1,α,m ∈ C k,α.

• Here Ω is compact with Ric(Ω) bounded below.

• Needs to use weak solutions and relaxed formulations from MFG theory
([Cardaliaguet-Graber ’15], [Orrieri-P.-Savare ’19]..)
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Regularization by entropy

We can use the additional entropy to regularize the Wasserstein
geodesic

(warning: different from entropic transport)

(i) consider an entropic perturbation of optimal transport:

Eε(m, v) :=

∫ 1

0

∫
Ω

1

2
|v |2dm + ε H(m/%)

and approximate m0,m1 with strictly positive, smooth marginals
(e.g. use heat semigroup)

(ii) ∃ smooth solutions uε,mε

(iii) Previous estimates are fully justified for uε,mε and stable as
ε→ 0

Convergence to Wasserstein geodesic:

min Eε = W2(m0,m1)2 + rε

where rε = O(ε) if m0,m1 have finite entropy, if not rε =O(ε|log ε|).

 mε converges to the Wasserstein geodesic, uε converges
uniformly to the Kantorovich potential
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In search of diffusivity (Part III)  slow diffusion & free boundary

[with P. Cardaliaguet & S. Munoz]

Model case: kinetic energy + power-type congestion [f (m) = mθ]
−∂tu + 1

2 |Du|
2 = mθ , θ > 0

∂tm − div (mDu) = 0

m(0) = m0 , m(T ) = m1

Qn: What happens to solutions with compactly supported marginals ?

 finite speed of propagation: m0 with compact support

⇒ m(t) remains with compact support

 formation of a free boundary

Rmk: the behavior is reminiscent of porous medium diffusion

(not surprising: porous medium equation is the associated gradient flow!)
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Self-similar solutions

{
−∂tu + 1

2 |Du|
2 = mθ

∂tm − div (mDu) = 0

 ∃ self-similar solutions with compact support m = t−αφ(|x |/t−α):

(d = 1) m = t−α
(
R − α(1−α)

2

(
|x|
tα

)2
)1/θ

+

, α = 2
2+θ

with R such that
∫
φ = 1;

and u = −α |x|
2

2t + c(t) in the support of m, with c ′(t) = −Rt−2θ/(2+θ)

m is very similar to the Barenblatt solution for porous media !!

m connects a Dirac mass with a compactly supported bump function

The support propagates with finite speed, m is only Hölder
continuous

the free boundary spreads outward with speed tα
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|x|
tα

)2
)1/θ

+

, α = 2
2+θ

with R such that
∫
φ = 1;

and u = −α |x|
2

2t + c(t) in the support of m, with c ′(t) = −Rt−2θ/(2+θ)

m is very similar to the Barenblatt solution for porous media !!

m connects a Dirac mass with a compactly supported bump function

The support propagates with finite speed, m is only Hölder
continuous

the free boundary spreads outward with speed tα
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Thanks to the self-similar solution, we can characterize the transport
of Dirac masses: (d = 1) There exists a unique solution of −ut + 1

2 |ux |
2 = mθ in (0,T )× R

mt − (mux)x = 0 in (0,T )× R
m(0) = δ0, m(T ) = m1

such that tαm(t, tαx)
t→0→ φ (in suitable sense)

The self-similar solution gives the prototype behavior of the
free-boundary evolution
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Analysis of the free boundary (one-dimensional case)

m0,m1 are bump-like functions

{m0 > 0} = (a0, b0) , {m1 > 0} = (a1, b1)

mθ
0 is Lipschitz and semi-convex, and m0(x) ∼= c0 dist(x , {a0, b0})β

for some β, c0 > 0 (+ similar conditions on m1)

Preliminary: under the above conditions, the system
−∂tu + 1

2 |ux |
2 = mθ

∂tm − div (mux) = 0

m(0) = m0 , m(T ) = m1

admits a (unique) solution (u,m) with m continuous and u Lipschitz.

 Free boundary: ∂{m(t) > 0}
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Flow of optimal trajectories (characteristics)

The function γ : [a0, b0]× [0,T ]→ R defined by{
γ̇(·) = −ux(γ(·), ·)
γ(0) = x

describes the optimal trajectory for a player starting at x at time t = 0

 we prove that γ([a0, b0]) = [a1, b1] and the free- boundary curves are

γL(t) := γ(a0, t) , γR(t) := γ(b0, t)

γ(x , t) is well-defined, globally Lipschitz in (a0, b0)× [0,T ], γx > 0

{m > 0} = {(x , t) ∈ R× [0,T ] : γL(t) < x < γR(t)}
 γL, γR are Lipschitz curves

γ is a classical solution in (a0, b0)× (0,T ) of the elliptic equation

γtt +
θmθ

0

(γx)2+θ
γxx =

(mθ
0)x

(γx)1+θ
x ∈ (a0, b0), t ∈ (0,T )
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To get more regularity of the free boundary, we assume further:

(mθ
0)xx ≤ 0 for x near ∂[a, b]

Important: this condition implies (mθ
0)x(a0) > 0 and (mθ

0)x(b0) < 0

 a nondegeneracy condition (cfr. the initial pressure in porous media).

Then:

{m > 0} is convex and has a C 1,1 interface

if mθ
0 is strictly concave, we have optimal speed of propagation and

long time decay of m:

|γ(x , t)| ' C tα, m(γ(x , t), t) = O(t−α)

m,Du are globally Hölder continuous

• Holder regularity is proved by intrinsic scaling methods.
Key-tool: look at the equation of mθ along trajectories

v(t, x) := mθ(γ(x , t), t) satisfies −
(

vx
γx

)
x
−
(
γx
θv vt

)
t

= 0
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Comments, perspective topics & works in progress:

We discussed OT problems with additive density-dependent costs

(i) embed Wasserstein geodesics into a larger family of more regular
optimal curves

(ii) Have different geometric properties of transport, finite Vs infinite
speed of propagation

(iii) The optimality system is an elliptic equation for u (but second order
in time!)  finite difference schemes, Newton’s methods, etc...

This is different from the entropic Optimal Transport:

penalizing the Fisher information of m  leads to fourth order
equation in u
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Other congestion models in crowd dynamics of multiplicative type

 cost of motion is proportional to the density of crowd

Model cost: L(m, q) = mα |q|2
2

→ lead to different distances between measures
[Cardaliaguet-Carlier-Nazaret ’08], [Dolbeault-Nazaret-Savare’09]

Optimality system gives different quasilinear elliptic equations{
−∂tu + 1

2
|Du|2
mα = 0 ,

∂tm − div(m Du
mα ) = 0 ,

m =
(

1
2
|Du|2
∂tu

) 1
α

 tr
(
A(Du)D2u

)
= 0 D = (∂t(·),D(·))

Formally: the operator is elliptic iff α < 2
(cf. [Lions ’10], [Achdou-P. ’18]...)

...[more to come ?...]

Thanks for the attention !
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Key-point: the elliptic equation satisfied by γ

γtt +
θmθ

0

(γx)2+θ
γxx =

(mθ
0)x

(γx)1+θ
x ∈ (a0, b0), t ∈ (0,T )

Where does it come from ?

1 γ(x , ·) is the minimizer of

inf
α∈H1, α(t)=x

∫ T

t

1

2
|α̇|2 + f (m(α, s)) ds + u(α(T ),T ).

 γtt(x , t) = f ′(m(γ(x , t), t))mx(γ(x , t), t) (Euler-Lagrange eq.)

2 γx(x , t)m(γ(x , t), t) = m0(x) (mass transport: m = γ]m0)

 γxxm(γ(x , t), t) + (γx)2mx(γ(x , t), t) = (m0)x

(1 + 2) ⇒ γtt +
θmθ0

(γx )2+θ γxx =
(mθ0 )x

(γx )1+θ
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