# Structure-preserving machine learning and data-driven structure discovery

Machine Learning and PDEs Workshop FAU April 30, 2025

### Wei Zhu Georgia Institute of Technology





## Structure-preserving generative models and data-driven structure discovery

Machine Learning and PDEs Workshop FAU April 30, 2025

### Wei Zhu Georgia Institute of Technology





#### Joint with Jeremiah Birrell, Ziyu Chen, Markos Katsoulakis, Luc Rey-Bellet, Ben Zhang.

















#### **Real images**



StyleGAN2, Karras et al., CVPR 2020















#### **Real images**



#### **Generated "fake" images**



StyleGAN2, Karras et al., CVPR 2020



•  $(x_1, \dots, x_m) \sim Q - \underline{\text{unknown target}}$  distribution.

 $x_1, \cdots, x_m \sim Q$ HHHD



- $(x_1, \dots, x_m) \sim Q \underline{\text{unknown target}}$  distribution.
- Learn a "mechanism" to generate <u>new</u> samples

$$(y_1, \cdots, y_n) \sim P_g$$

- $P_g$  is the **generated** distribution.
- $Q \approx P_g$

 $x_1, \cdots, x_m \sim Q$   $(y_1, \cdots, y_n) \sim P_g$ 





- $(x_1, \dots, x_m) \sim Q \underline{\text{unknown target}}$  distribution.
- Learn a "mechanism" to generate <u>new</u> samples

$$(y_1, \cdots, y_n) \sim P_g$$

- $P_g$  is the **generated** distribution.
- $Q \approx P_g$

**Question:** How to achieve this?

 $x_1, \cdots, x_m \sim Q$   $(y_1, \cdots, y_n) \sim P_g$ 







 $X \ni x \sim Q$ 



#### • GAN: two-player game for learning Q.

 $X \ni x \sim Q$ 



- GAN: two-player game for learning Q.
- Generator  $g: Z \to X$

 $X \ni x \sim Q$  $X \ni g(z) \sim P_g$ 



- GAN: two-player game for learning Q.
- Generator  $g: Z \to X$
- Discriminator  $\gamma: X \to \mathbb{R}$
- Discrepancy  $H(\gamma; Q, P_g)$ 
  - e.g.,  $H(\gamma; Q, P_g) = \mathbb{E}_Q[\gamma] \mathbb{E}_{P_g}[\gamma]$



- GAN: two-player game for learning Q.
- Generator  $g: Z \to X$
- Discriminator  $\gamma: X \to \mathbb{R}$
- Discrepancy  $H(\gamma; Q, P_g)$ 
  - e.g.,  $H(\gamma; Q, P_g) = \mathbb{E}_Q[\gamma] \mathbb{E}_{P_g}[\gamma]$

Probability divergence

$$D_{H}^{\Gamma}(\boldsymbol{Q} \| \boldsymbol{P}_{g}) = \max_{\boldsymbol{\gamma} \in \Gamma} H(\boldsymbol{\gamma}; \boldsymbol{Q}, \boldsymbol{P}_{g})$$

• e.g., <u>Wasserstein distance</u>:  $\Gamma = \text{Lip}_1(X)$ 





- GAN: two-player game for learning Q.
- Generator  $g: Z \to X$
- Discriminator  $\gamma: X \to \mathbb{R}$
- Discrepancy  $H(\gamma; Q, P_g)$ 
  - e.g.,  $H(\gamma; Q, P_g) = \mathbb{E}_Q[\gamma] \mathbb{E}_{P_g}[\gamma]$

Probability divergence

$$D_{H}^{\Gamma}(\boldsymbol{Q} \| \boldsymbol{P}_{g}) = \max_{\boldsymbol{\gamma} \in \Gamma} H(\boldsymbol{\gamma}; \boldsymbol{Q}, \boldsymbol{P}_{g})$$

• e.g., <u>Wasserstein distance</u>:  $\Gamma = \text{Lip}_1(X)$ 

• GAN:  $\min_{g \in G} D_H^{\Gamma}(\mathcal{Q} \| P_g) = \min_{g \in G} \max_{\gamma \in \Gamma} H(\gamma; \mathcal{Q}, P_g)$ 



### Many real-world data have intrinsic structures



## Many real-world data have intrinsic structures



1. Ciompi et al., Zenodo 2019; 2. Borovec et al., IEEE Transactions on Medical Imaging 2020

Equiprobable





## Many real-world data have intrinsic structures



1. Ciompi et al., Zenodo 2019; 2. Borovec et al., IEEE Transactions on Medical Imaging 2020

#### Equiprobable



- An image and its rotated copies should have the same likelihood/probability.
- *Q* has group symmetry: invariant under rotation.











#### How can we quantify the performance gain?





#### How can we quantify the performance gain?

#### How can we flexibly impose general structures in diffusion models?





#### How can we quantify the performance gain?

#### How can we flexibly impose general structures in diffusion models?



#### **GAN** with embedded structure $X \ni x \sim Q \longrightarrow$ $\gamma: X \to \mathbb{R} \longrightarrow H(\gamma; Q, P_g)$ $g:Z\to X$ Generator Discriminator $\rightarrow X \ni g(z) \sim P_g \rightarrow$ $Z \ni z \sim P_Z$



# $\min_{g \in G} D_{H}^{\Gamma}(\mathcal{Q} \| P_{g}) = \min_{g \in G} \max_{\gamma \in \Gamma} H(\gamma; \mathcal{Q}, P_{g}), \quad \mathcal{Q} \text{ is } \Sigma \text{-invariant}$



# **GAN** with embedded structure $X \ni x \sim Q \longrightarrow \gamma: X \to \mathbb{R} \longrightarrow H(\gamma; Q, P_g)$ $g: Z \to X$ Generator $\rightarrow X \ni g(z) \sim P_g \rightarrow$ $Z \ni z \sim P_Z$ $\min_{g \in G} D_{H}^{\Gamma}(\mathcal{Q} \| P_{g}) = \min_{g \in G} \max_{\gamma \in \Gamma} H(\gamma; \mathcal{Q}, P_{g}), \quad \mathcal{Q} \text{ is } \Sigma \text{-invariant}$ • Target distribution Q is invariant to a group $\Sigma$ . How to incorporate such structure into g and γ?



### Theorem 1: "smarter" generator $g: Z \to X$ nerator $\gamma: X \to \mathbb{R} \longrightarrow H(\gamma; Q, P_g)$ Discriminator $\longrightarrow X \ni g(z) \sim P_g \longrightarrow$





**Theorem** [Birrell, Katsoulakis, Rey-Bellet, **Z.**, *ICML* 2022]

If  $P_Z$  is  $\Sigma$ -invariant and  $g: Z \to X$  is  $\Sigma$ -equivariant, the generated measure  $P_g$  is  $\Sigma$ -invariant.

Symmetry information of Q can be built into a "smarter" generator.



### Theorem 2: "smarter" discriminator



### Theorem 2: "smarter" discriminator



**Theorem** [Birrell, Katsoulakis, Rey-Bellet, **Z.**, *ICML* 2022]

Under mild assumptions on  $\Sigma$  and  $\Gamma$ , if the distributions P, Q are  $\Sigma$ -invariant, then

$$\sup_{\gamma \in \Gamma} H(\gamma; Q, P) = D^{\Gamma}(Q || P) = D^{\Gamma_{\Sigma}^{\text{inv}}}(Q || P) = \sup_{\gamma \in \Gamma_{\Sigma}^{\text{inv}}} H(\gamma; Q, P),$$

•  $\Gamma_{\Sigma}^{\text{INV}}$  is the subset of  $\Gamma$  that includes only  $\Sigma$ -invariant "smarter" discriminators.



### Theorem 2: "smarter" discriminator



**Theorem** [Birrell, Katsoulakis, Rey-Bellet, **Z.**, *ICML* 2022]

Under mild assumptions on  $\Sigma$  and  $\Gamma$ , if the distributions P, Q are  $\Sigma$ -invariant, then

$$\sup_{\gamma \in \Gamma} H(\gamma; Q, P) = D^{\Gamma}(Q || P) = D^{\Gamma_{\Sigma}^{\text{inv}}}(Q || P) = \sup_{\gamma \in \Gamma_{\Sigma}^{\text{inv}}} H(\gamma; Q, P),$$

- $\Gamma_{\Sigma}^{\text{INV}}$  is the subset of  $\Gamma$  that includes only  $\Sigma$ -invariant "smarter" discriminators.

• We only need to optimize over the smaller subset  $\Gamma_{\Sigma}^{inv}$  to <u>"compute"</u> the divergence  $D^{\Gamma}(Q||P)$ .



# Rotated MNIST with 1% training data





# Medical images (ANHIR)



**Real Samples** 













# Medical images (ANHIR)



**Real Samples** 















#### How can we quantify the performance gain?

#### How can we flexibly impose general structures in diffusion models?



# What is the reason behind the improvement?



# What is the reason behind the improvement?



• Reducing  $\Gamma$  to  $\Gamma_{\Sigma}^{\text{inv}}$  can provide a better <u>empirical estimation</u> for  $D^{\Gamma}(Q||P)$ .

### $P, Q \text{ are } \Sigma \text{-invariant} \Longrightarrow D^{\Gamma}(Q || P) = D^{\Gamma_{\Sigma}^{\Pi V}}(Q || P)$




• Reducing  $\Gamma$  to  $\Gamma_{\Sigma}^{\text{inv}}$  can provide a better <u>empirical estimation</u> for  $D^{\Gamma}(Q||P)$ .

 $\sup H(\gamma; Q, P) = D^{\Gamma}(Q || P)$  $\gamma \in \Gamma$ 

#### $P, Q \text{ are } \Sigma \text{-invariant} \Longrightarrow D^{\Gamma}(Q || P) = D^{\Gamma_{\Sigma}^{\Pi V}}(Q || P)$





P, Q are  $\Sigma$ -invariant =

• Reducing  $\Gamma$  to  $\Gamma_{\Sigma}^{inv}$  can provide a better <u>empirical estimation</u> for  $D^{\Gamma}(Q||P)$ .

 $\sup H(\gamma; Q, P) = D^{\Gamma}(Q || P) \approx D^{\Gamma}(Q_n || P_m)$  $\gamma \in \Gamma$ 

 $(x_1, \dots, x_m) \sim P, (y_1, \dots, y_n) \sim Q \Longrightarrow \mathsf{Em}$ 

$$\Rightarrow D^{\Gamma}(Q||P) = D^{\Gamma_{\Sigma}^{\text{inv}}}(Q||P)$$

pirical measures 
$$P_m = \frac{1}{m} \sum_{i=1}^m \delta_{x_i}, Q_n = \frac{1}{n} \sum_{i=1}^n \delta_{y_i}$$





P, Q are  $\Sigma$ -invariant =

• Reducing  $\Gamma$  to  $\Gamma_{\Sigma}^{\text{inv}}$  can provide a better <u>empirical estimation</u> for  $D^{\Gamma}(Q||P)$ .

 $\sup H(\gamma; Q, P) = D^{\Gamma}(Q || P)$  $\gamma \in \Gamma$ 

 $(x_1, \dots, x_m) \sim P, (y_1, \dots, y_n) \sim Q \Longrightarrow \mathsf{Em}$ 

$$\Rightarrow D^{\Gamma}(Q||P) = D^{\Gamma_{\Sigma}^{\text{inv}}}(Q||P)$$

$$\approx D^{\Gamma}(Q_n || P_m) \approx D^{\Gamma_{\Sigma}}(Q_n || P_m)$$

pirical measures 
$$P_m$$
 =

$$= \frac{1}{m} \sum_{i=1}^{m} \delta_{x_i}, \ Q_n = \frac{1}{n} \sum_{i=1}^{n} \delta_y$$





• Reducing  $\Gamma$  to  $\Gamma_{\Sigma}^{\text{inv}}$  can provide a better <u>empirical estimation</u> for  $D^{\Gamma}(Q||P)$ .

 $\sup H(\gamma; Q, P) = D^{\Gamma}(Q || P)$  $\gamma \in \Gamma$ 

 $(x_1, \dots, x_m) \sim P, (y_1, \dots, y_n) \sim Q \Longrightarrow \mathsf{Em}$ 

Question: How much more accurate is the new estimation?

#### P, Q are $\Sigma$ -invariant $\Longrightarrow D^{\Gamma}(Q || P) = D^{\Gamma_{\Sigma}^{\Pi V}}(Q || P)$

$$\approx D^{\Gamma}(Q_n || P_m) \approx D^{\Gamma_{\Sigma}}(Q_n || P_m)$$

pirical measures 
$$P_m = \frac{1}{m} \sum_{i=1}^m \delta_{x_i}, Q_n = \frac{1}{n} \sum_{i=1}^n \delta_{y_i}$$



•  $MMD(Q, P) = \sup\{\mathbb{E}_Q[\gamma] - \mathbb{E}_P[\gamma]\}$ .  $\Gamma$  is the unit ball in some RKHS  $\mathscr{H}$  with kernel k(x, y).  $\gamma \in \Gamma$ Estimator:  $MMD^{\Sigma}(Q_n, P_m) = \sup_{\substack{\gamma \in \Gamma_{\Sigma}}} \{ \mathbb{E}_{Q_n}[\gamma] - \mathbb{E}_{P_m}[\gamma] \} \approx MMD(Q, P)$ 

• 
$$\mathsf{MMD}(Q, P) = \sup_{\gamma \in \Gamma} \{\mathbb{E}_{Q}[\gamma] - \mathbb{E}_{P}[\gamma]\}$$
.  $\Gamma$  is the unit ball in some **RKHS**  $\mathcal{H}$   
• **Estimator**:  $\mathsf{MMD}^{\Sigma}(Q_{n}, P_{m}) = \sup_{\gamma \in \Gamma_{\Sigma}^{\mathsf{inv}}} \{\mathbb{E}_{Q_{n}}[\gamma] - \mathbb{E}_{P_{m}}[\gamma]\} \approx \mathsf{MMD}(Q, P)$ 

**Theorem** [Chen, Katsoulakis, Rey-Bellet, **Z.**, *ICML* 2023] Let  $\Sigma$  be a finite group acting on X, and P, Q are  $\Sigma$ -invariant. With high probability,  $\left| \mathsf{MMD}(Q, P) - \mathsf{MMD}^{\Sigma}(Q_n, P_m) \right| = O \left( A_{\Sigma, k} \right)$ where  $A_{\Sigma,k} = \sqrt{a_{\Sigma,k} + \frac{1 - a_{\Sigma,k}}{|\Sigma|}}$ , and  $a_{\Sigma,k} \in (0,1)$  depends on  $\Sigma$  and the **kernel** k(x, y).

 $\ell$  with kernel k(x, y).

$$k\left(\frac{1}{\sqrt{m}} + \frac{1}{\sqrt{n}}\right)$$



• 
$$\mathsf{MMD}(Q, P) = \sup_{\gamma \in \Gamma} \{\mathbb{E}_{Q}[\gamma] - \mathbb{E}_{P}[\gamma]\}$$
.  $\Gamma$  is the unit ball in some **RKHS**  $\mathcal{H}$   
• **Estimator**:  $\mathsf{MMD}^{\Sigma}(Q_{n}, P_{m}) = \sup_{\gamma \in \Gamma_{\Sigma}} \{\mathbb{E}_{Q_{n}}[\gamma] - \mathbb{E}_{P_{m}}[\gamma]\} \approx \mathsf{MMD}(Q, P)$ 

**Theorem** [Chen, Katsoulakis, Rey-Bellet, **Z.**, *ICML* 2023] Let  $\Sigma$  be a finite group acting on X, and P, Q are  $\Sigma$ -invariant. With high probability,

$$\left| \mathsf{MMD}(Q, P) - \mathsf{MMD}^{\Sigma}(Q_n, P_m) \right| = O\left( A_{\Sigma, k} \left( \frac{1}{\sqrt{m}} + \frac{1}{\sqrt{n}} \right) \right)$$

where 
$$A_{\Sigma,k} = \sqrt{a_{\Sigma,k} + \frac{1 - a_{\Sigma,k}}{|\Sigma|}}$$

if 
$$a_{\Sigma,k} \approx 0$$



• 
$$\mathsf{MMD}(Q, P) = \sup_{\gamma \in \Gamma} \{\mathbb{E}_{Q}[\gamma] - \mathbb{E}_{P}[\gamma]\}$$
.  $\Gamma$  is the unit ball in some **RKHS**  $\mathcal{H}$   
• **Estimator**:  $\mathsf{MMD}^{\Sigma}(Q_{n}, P_{m}) = \sup_{\gamma \in \Gamma_{\Sigma}} \{\mathbb{E}_{Q_{n}}[\gamma] - \mathbb{E}_{P_{m}}[\gamma]\} \approx \mathsf{MMD}(Q, P)$ 

**Theorem** [Chen, Katsoulakis, Rey-Bellet, **Z.**, *ICML* 2023]

Let  $\Sigma$  be a finite group acting on X, and P, Q are  $\Sigma$ -invariant. With high probability,

$$\left| \mathsf{MMD}(Q, P) - \mathsf{MMD}^{\Sigma}(Q_n, P_m) \right| = O\left( A_{\Sigma,k} \left( \frac{1}{\sqrt{m}} + \frac{1}{\sqrt{n}} \right) \right)$$
  
here  $A_{\Sigma,k} = \sqrt{a_{\Sigma,k}} + \frac{1 - a_{\Sigma,k}}{|\Sigma|} \approx \sqrt{0 + \frac{1 - 0}{|\Sigma|}} = \sqrt{\frac{1}{|\Sigma|}}, \text{ if } a_{\Sigma,k} \approx 0$ 

where 
$$A_{\Sigma,k} = \sqrt{a_{\Sigma,k} + \frac{1 - a_{\Sigma,k}}{|\Sigma|}}$$



• 
$$\mathsf{MMD}(Q, P) = \sup_{\gamma \in \Gamma} \{\mathbb{E}_{Q}[\gamma] - \mathbb{E}_{P}[\gamma]\}$$
.  $\Gamma$  is the unit ball in some **RKHS**  $\mathcal{H}$   
• **Estimator**:  $\mathsf{MMD}^{\Sigma}(Q_{n}, P_{m}) = \sup_{\gamma \in \Gamma_{\Sigma}} \{\mathbb{E}_{Q_{n}}[\gamma] - \mathbb{E}_{P_{m}}[\gamma]\} \approx \mathsf{MMD}(Q, P)$ 

**Theorem** [Chen, Katsoulakis, Rey-Bellet, **Z.**, *ICML* 2023]

Let  $\Sigma$  be a finite group acting on X, and P, Q are  $\Sigma$ -invariant. With high probability,

$$\left| \mathsf{MMD}(Q, P) - \mathsf{MMD}^{\Sigma}(Q_n, P_m) \right| = O\left( A_{\Sigma,k} \left( \frac{1}{\sqrt{m}} + \frac{1}{\sqrt{n}} \right) \right) \approx O\left( \frac{1}{\sqrt{|\Sigma|m}} + \frac{1}{\sqrt{|\Sigma|n}} \right)$$
  
here  $A_{\Sigma,k} = \sqrt{a_{\Sigma,k}} + \frac{1 - a_{\Sigma,k}}{|\Sigma|} \approx \sqrt{0 + \frac{1 - 0}{|\Sigma|}} = \sqrt{\frac{1}{|\Sigma|}}, \text{ if } a_{\Sigma,k} \approx 0$ 

where 
$$A_{\Sigma,k} = \sqrt{a_{\Sigma,k} + \frac{1 - a_{\Sigma,k}}{|\Sigma|}}$$



• 
$$\mathsf{MMD}(Q, P) = \sup_{\gamma \in \Gamma} \{\mathbb{E}_{Q}[\gamma] - \mathbb{E}_{P}[\gamma]\}$$
.  $\Gamma$  is the unit ball in some **RKHS**  $\mathcal{H}$   
• **Estimator**:  $\mathsf{MMD}^{\Sigma}(Q_{n}, P_{m}) = \sup_{\gamma \in \Gamma_{\Sigma}} \{\mathbb{E}_{Q_{n}}[\gamma] - \mathbb{E}_{P_{m}}[\gamma]\} \approx \mathsf{MMD}(Q, P)$ 

**Theorem** [Chen, Katsoulakis, Rey-Bellet, **Z.**, *ICML* 2023] Let  $\Sigma$  be a finite group acting on X, and P, Q are  $\Sigma$ -invariant. With high probability,

$$\left| \mathsf{MMD}(\underline{Q}, \underline{P}) - \mathsf{MMD}^{\Sigma}(\underline{Q}_n, \underline{P}_m) \right| = O\left( A_{\Sigma, k} \left( \frac{1}{\sqrt{m}} + \frac{1}{\sqrt{n}} \right) \right)$$

where 
$$A_{\Sigma,k} = \sqrt{a_{\Sigma,k} + \frac{1 - a_{\Sigma,k}}{|\Sigma|}}$$

if 
$$a_{\Sigma,k} \approx 1$$



• 
$$\mathsf{MMD}(Q, P) = \sup_{\gamma \in \Gamma} \{\mathbb{E}_{Q}[\gamma] - \mathbb{E}_{P}[\gamma]\}$$
.  $\Gamma$  is the unit ball in some **RKHS**  $\mathcal{H}$   
• **Estimator**:  $\mathsf{MMD}^{\Sigma}(Q_{n}, P_{m}) = \sup_{\gamma \in \Gamma_{\Sigma}} \{\mathbb{E}_{Q_{n}}[\gamma] - \mathbb{E}_{P_{m}}[\gamma]\} \approx \mathsf{MMD}(Q, P)$ 

**Theorem** [Chen, Katsoulakis, Rey-Bellet, **Z.**, *ICML* 2023]

Let  $\Sigma$  be a finite group acting on X, and P, Q are  $\Sigma$ -invariant. With high probability,

$$\begin{split} \left| \mathsf{MMD}(Q, P) - \mathsf{MMD}^{\Sigma}(Q_n, P_m) \right| &= O\left( A_{\Sigma, k} \left( \frac{1}{\sqrt{m}} + \frac{1}{\sqrt{n}} \right) \right) \\ \text{here } A_{\Sigma, k} &= \sqrt{a_{\Sigma, k}} + \frac{1 - a_{\Sigma, k}}{|\Sigma|} \quad \approx \sqrt{1 + \frac{1 - 1}{|\Sigma|}} = 1, \qquad \text{if } a_{\Sigma, k} \approx 0 \end{split}$$

where 
$$A_{\Sigma,k} = \sqrt{a_{\Sigma,k} + \frac{1 - a_{\Sigma,k}}{|\Sigma|}}$$



• 
$$\mathsf{MMD}(Q, P) = \sup_{\gamma \in \Gamma} \{\mathbb{E}_{Q}[\gamma] - \mathbb{E}_{P}[\gamma]\}$$
.  $\Gamma$  is the unit ball in some **RKHS**  $\mathcal{H}$   
• **Estimator**:  $\mathsf{MMD}^{\Sigma}(Q_{n}, P_{m}) = \sup_{\gamma \in \Gamma_{\Sigma}} \{\mathbb{E}_{Q_{n}}[\gamma] - \mathbb{E}_{P_{m}}[\gamma]\} \approx \mathsf{MMD}(Q, P)$ 

**Theorem** [Chen, Katsoulakis, Rey-Bellet, **Z.**, *ICML* 2023]

Let  $\Sigma$  be a finite group acting on X, and P, Q are  $\Sigma$ -invariant. With high probability,

$$\begin{split} \left| \mathsf{MMD}(Q, P) - \mathsf{MMD}^{\Sigma}(Q_n, P_m) \right| &= O\left( A_{\Sigma, k} \left( \frac{1}{\sqrt{m}} + \frac{1}{\sqrt{n}} \right) \right) \approx O\left( \frac{1}{\sqrt{m}} + \frac{1}{\sqrt{n}} \right) \\ \text{here } A_{\Sigma, k} &= \sqrt{a_{\Sigma, k}} + \frac{1 - a_{\Sigma, k}}{|\Sigma|} \quad \approx \sqrt{1 + \frac{1 - 1}{|\Sigma|}} = 1, \qquad \text{if } a_{\Sigma, k} \approx 1 \end{split}$$

where 
$$A_{\Sigma,k} = \sqrt{a_{\Sigma,k} + \frac{1 - a_{\Sigma,k}}{|\Sigma|}}$$









 $\left| \mathsf{MMD}(Q, P) - \mathsf{MMD}^{\Sigma}(Q_n, P_m) \right| = O \left| A_{\Sigma, N} \right|$ 



• P = Q is a mixture of 64 Gaussians.

$$_{k}\left(\frac{1}{\sqrt{m}}+\frac{1}{\sqrt{n}}\right), \quad A_{\Sigma,k}=\sqrt{a_{\Sigma,k}}+\frac{1-a_{\Sigma,k}}{|\Sigma|}$$



 $\left| \mathsf{MMD}(Q, P) - \mathsf{MMD}^{\Sigma}(Q_n, P_m) \right| = O \left| A_{\Sigma, N} \right|$ 



$$_{k}\left(\frac{1}{\sqrt{m}} + \frac{1}{\sqrt{n}}\right) , \quad A_{\Sigma,k} = \sqrt{a_{\Sigma,k}} + \frac{1 - a_{\Sigma,k}}{|\Sigma|}$$

• P = Q is a mixture of 64 Gaussians.

• Then P, Q are  $\Sigma$ -invariant, for  $\Sigma = C_1, C_4, C_{16}, C_{64}$ .





 $\left| \mathsf{MMD}(Q, P) - \mathsf{MMD}^{\Sigma}(Q_n, P_m) \right| = O \left| A_{\Sigma, N} \right|$ 



$$_{k}\left(\frac{1}{\sqrt{m}} + \frac{1}{\sqrt{n}}\right) , \quad A_{\Sigma,k} = \sqrt{a_{\Sigma,k}} + \frac{1 - a_{\Sigma,k}}{|\Sigma|}$$

• P = Q is a mixture of 64 Gaussians.

• Then P, Q are  $\Sigma$ -invariant, for  $\Sigma = C_1, C_4, C_{16}, C_{64}$ .

Consider the Gaussian kernel with bandwidth s

$$k_{\mathbf{s}}(x, y) = \exp\left(-\frac{\|x - y\|^2}{2\mathbf{s}^2}\right)$$



 $\left| \mathsf{MMD}(Q, P) - \mathsf{MMD}^{\Sigma}(Q_n, P_m) \right| = O \left| A_{\Sigma, N} \right|$ 



• Question: is the estimation more accurate as  $\sum$ 

$$A_{\mathbf{\Sigma},k}\left(\frac{1}{\sqrt{m}} + \frac{1}{\sqrt{n}}\right), \quad A_{\mathbf{\Sigma},k} = \sqrt{a_{\mathbf{\Sigma},k}} + \frac{1 - a_{\mathbf{\Sigma},k}}{|\mathbf{\Sigma}|}$$

• P = Q is a mixture of 64 Gaussians.

• Then P, Q are  $\Sigma$ -invariant, for  $\Sigma = C_1, C_4, C_{16}, C_{64}$ .

Consider the Gaussian kernel with bandwidth s

$$k_{\mathbf{s}}(x, y) = \exp\left(-\frac{\|x - y\|^2}{2\mathbf{s}^2}\right)$$











number of samples









- Chen, Katsoulakis, Rey-Bellet, Z., "Statistical Guarantees of Group-Invariant GANs", SIAM J. on Uncertainty Quantification (2025)
- Chen, Z., "On the implicit bias of linear equivariant steerable networks", NeurIPS (2023).

24







#### How can we impose symmetry in generative models (GANs)?

#### How can we quantify the performance gain?

#### How can we flexibly impose general structures in diffusion models?





- $\mathbf{x}(0) \sim \mathbf{Q}$  (data distribution)
- $\mathbf{x}(T) \sim \pi$  (tractable prior/reference distribution)



- $\mathbf{x}(0) \sim \mathbf{Q}$  (data distribution)
- $\mathbf{x}(T) \sim \pi$  (tractable prior/reference distribution)
- Embedded structure in score function

$$S(x,t) = \nabla_x \log p(x,t)$$



- $\mathbf{x}(0) \sim \mathbf{Q}$  (data distribution)
- $\mathbf{x}(T) \sim \pi$  (tractable prior/reference distribution)
- Embedded structure in score function

$$S(x,t) = \nabla_x \log p(x,t)$$

• Rigid...



- $\mathbf{x}(0) \sim \mathbf{Q}$  (data distribution)
- $\mathbf{x}(T) \sim \pi$  (tractable prior/reference distribution)
- Embedded structure in score function

$$S(x,t) = \nabla_x \log p(x,t)$$

• Rigid...

- Embed structure (flexibly!) in  $\pi$ 
  - Multimodel, approximate group symmetry, lowdimensionality, etc.
  - Tractable reference distribution close to  ${\it Q}$





- $\mathbf{x}(0) \sim \mathbf{Q}$  (data distribution)
- $\mathbf{x}(T) \sim \pi$  (tractable prior/reference distribution)
- Embedded structure in score function

$$S(x,t) = \nabla_x \log p(x,t)$$

• Rigid...

- Embed structure (flexibly!) in  $\pi$ 
  - Multimodel, approximate group symmetry, lowdimensionality, etc.
  - Tractable reference distribution close to  ${\it Q}$
- Requires **nonlinear** drift f(x, t), special training.





Reverse SDE (noise  $\rightarrow$  data)





$$\mathbf{x}(0)$$
  $\mathbf{x}(0)$   $\mathbf{x}(0)$   $\mathbf{x}(0)$   $\mathbf{x}(0)$ 

Denoising score matching

$$\min_{\theta} \mathbb{E} \left\{ \lambda(t) \mathbb{E}_{x(0)} \mathbb{E}_{x(t)|x(0)} \left[ S_{\theta}(t) \right] \right\}$$

 $(x(t), t) - \nabla_{x(t)} \log p_{t|0} (x(t) | x(0)) \bigg] \bigg\}$ 





$$\mathbf{x}(0)$$
  $\leftarrow$   $d\mathbf{x} = [\mathbf{f}(\mathbf{x}, t) - g^2]$ 

Denoising score matching

$$\min_{\theta} \mathbb{E} \left\{ \lambda(t) \mathbb{E}_{x(0)} \mathbb{E}_{x(t)|x(0)} \left[ S_{\theta}(x(t), t) - \nabla_{x(t)} \log p_{t|0} \left( x(t) | x(0) \right) \right] \right\}$$

•  $p_{t|0}(x(t)|x(0))$ 

#### has closed form formula for Ornstein-Uhlenbeck (OU) processes.





$$\mathbf{x}(0) \leftarrow \mathbf{d}\mathbf{x} = [\mathbf{f}(\mathbf{x}, t) - g^2]$$

Denoising score matching

$$\min_{\theta} \mathbb{E} \left\{ \lambda(t) \mathbb{E}_{x(0)} \mathbb{E}_{x(t)|x(0)} \left[ S_{\theta}(x(t), t) - \nabla_{x(t)} \log p_{t|0} \left( x(t) | x(0) \right) \right] \right\}$$

- $p_{t|0}(x(t)|x(0))$

has closed form formula for Ornstein-Uhlenbeck (OU) processes.

• For nonlinear forward SDE, e.g., Langevin dynamics,  $p_{t|0}(x(t)|x(0))$  is not known.



### **Multimodal distribution**



#### **GM+NDSM**

![](_page_69_Figure_6.jpeg)

### **Multimodal distribution**

![](_page_70_Picture_1.jpeg)

### **Multimodal distribution**

#### **OU+DSM**

![](_page_71_Picture_2.jpeg)

Fraction of samples generated in each class

![](_page_71_Figure_4.jpeg)

![](_page_71_Figure_6.jpeg)

![](_page_71_Figure_7.jpeg)
# **Multimodal distribution**

### OU+DSM



Fraction of samples generated in each class





### **GM+NDSM**



### **OU+DSM**



### **OU+DSM**

## OU+DSM, Sym scores





### **OU+DSM**

### OU+DSM, Sym scores





### **GM+NDSM**

# **Data-driven structure discovery**

#### PHYSICAL REVIEW E 108, L022301 (2023)

#### Machine learning of independent conservation laws through neural deflation

Wei Zhu<sup>1</sup>,<sup>\*</sup> Hong-Kun Zhang, and P. G. Kevrekidis<sup>1</sup> Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, Massachusetts 01003-4515, USA

(Received 5 April 2023; accepted 24 July 2023; published 18 August 2023)



Letter

Contents lists available at ScienceDirect

#### **Communications in Nonlinear Science and Numerical** Simulation

journal homepage: www.elsevier.com/locate/cnsns

#### Data-driven discovery of conservation laws from trajectories via neural deflation

Shaoxuan Chen<sup>a</sup>,\*, Panayotis G. Kevrekidis<sup>a</sup>, Hong-Kun Zhang<sup>a</sup>, Wei Zhu<sup>b</sup>

<sup>a</sup> Department of Mathematics and Statistics, University of Massachusetts Amherst, 710 N Pleasant St, Amherst, 01003-4515, MA, USA <sup>b</sup> School of Mathematics, Georgia Institute of Technology, 686 Cherry St NW, Atlanta, 30332, GA, USA

C







## Data-driven structure discovery

### Identification of moment equations via data-driven approaches in nonlinear Schrödinger models

Su Yang<sup>1</sup>\*, Shaoxuan Chen<sup>1</sup>, Wei Zhu<sup>1,2</sup> and P. G. Kevrekidis<sup>1</sup>

<sup>1</sup>Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA, United States, <sup>2</sup>School of Mathematics, Georgia Institute of Technology, Atlanta, GA, United States

#### COMPUTER ASSISTED DISCOVERY OF INTEGRABILITY VIA SILO: SPARSE IDENTIFICATION OF LAX OPERATORS

JIMMIE ADRIAZOLA\*, WEI ZHU<sup>†</sup>, PANAYOTIS KEVREKIDIS<sup>‡</sup>, and Alejandro ACEVES<sup>§</sup>











## Thank you for listening

#### Acknowledgement

- Air Force Young Investigator Award.
- NIH 1R01AI180243.
- NSF DMS-2052525, DMS-2140982, and DMS-2244976.



