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Image Reconstruction

Images (Videos) and their manipulation are part of our daily life

First step of image formation often underestimated, although often the
enabling part, cf. CT = Computed Tomography

Information / quality loss in image formation / reconstruction can hardly
be recovered later

Strong demand on methods for reconstruction and uncertainty
guantification in many application fields, from nano to macro
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Emission Tomography

Active / Passive

|ldea: detect photons emitted e.g. from radioactive
decay, with some kind of directional information

Coincidence based (e.g. PET)

Collimator based (e.g. SPECT)

Energy based (Compton effect)
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Image reconstruction from synchrotron x-ray sources
Ptychographic / Holographic Tomography

Wittwer et al 2023 (a) Far-Field Diffracton Patterns

0.7 [1.05 A (a.u)
(d

(b) Near-Field Holograms
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Image reconstruction across scales and planets

From nano to macro, from intracellular to outer space
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4Pi Deconvolution of Deconvdlition in Astrof6iiy
Syntaxin PC12 (with Donath et al 2022
Hell Lab, Gottingen)

Standard

Bregman-EM-GTV

STED Deconvolution of Bead Crystal Structure (with Hell
Lab, Gottingen)

I8BFDG-PET Reconstruction from short time data
(with Nuclear Medicine, Minster) v I

PET-MR, Rasch-Brinkmann-Burger 2017

Energy Efficient THZ Imaging on Mars,
with DLR Berlin IMAGING
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Modern image reconstruction

Model based view

Prior

degradation

Core forward
model

d

-

(main physics of
the image
formation)

noise sampling

Prior knowledge

(structural / data-driven) '\

Additional physics of the
image (e.g. motion)

=

Model errors correction,
uncertainties
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Model based approaches

The classical way of image reconstruction

Formulation as an inverse problem

« Derive physical model of(idealized) forward operator mapping from image to data
« Derive statistical model of noise (e.g. Poisson distribution for photon counts)

« Derive mathematical model of favourable images and structures (e.g. sparsity)

« Possibly add uncertainties

Condensed in Bayesian posterior model

1
w(ulf) = ()

Likelihood (from u to f) includes forward and noise model, prior includes model of favourable images l'“ |

HELMHOLTZ
IMAGING

DESY. | The mathematics of image reconstruction | Martin Burger, 20.3.2024 Page 7




Model based variational methods

Point estimates
Bayesian MAP estimate

u € argmin (— log 7( f|u) — log mo(u))
U
Related to variational regularization method

U € argman (F(Ku, f )+ orJ(u))

Forward operator K, data fidelity F, regularization functional J

Forward operator: physics (examples: convolution, Radon transform, wave propagation, ...)
Data fidelity: stochastics (examples: additive Gaussian noise, Poisson distribution, ...) rm,
Regularization: art ? How to translate structural properties into a functional ? I
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Model based variational methods

Example: PET
Radon + photon count Radon + photon + Radon + photon +
noise scattering scattering + attenuation

Y
=

H
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Model based variational methods

Improving noise models

Example: PET

L P o

A Right noise model
No regularization

B Right noise model

C Wrong noise model Approx. noise model Right noise model
Post smoothing E

TV regularization TV regularization TV regularization

Cardiac '°H,0 PET: Sawatzky, Brune, Miller, Burger 2009

VIR
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Model based regularizations

Images with sharp edges

Basic idea from denoising: want to smooth out random noise — local averaging

Simplest idea: Dirichlet energy - quadratic gradient regularization (Gaussian prior)

J(u) :/|Vu|2 dx 10
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10

Leads to oversmoothing — no sharp edges S ERRERRR NERRRRERR]
1110000 11111111
. 10 20 30 40 50 60 K 10 20 30 40 50 60

Regularity theory works against us: take K : I’ >Y
Optimality condition yields p = —Au = K w € L?

Regularity atleast U & H2 does not allow sharp edges
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Model based regularizations

Images with sharp edges

Alternative idea: p-Laplacian energy

Similar regularity forp > 1

Limit: total variation TV(u) — ’U’BV — sup / uV - g dzx
geCF()4,geC JQ

C={ge L®()|]|g(x)] <1 a.e. in Q}

Optimality condition K*@mF(KU’ f) +aV-g=0

gecC /g-dDu:|u]BV
Q)

F\"i‘\ |

Various extensions to cure bias (Bregman iterations) and to avoid staircasing (total generalized variatio H _i
HELMHOLTZ
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Model based regularizations

20 min data, EM reconstruction 5s data, Bregman-TGV regularization
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Model based regularizations

Total variation and related regularization

Optimality (source condition) V-g=K"w
g corresponds to (generalized) normal vector field on level lines (surfaces)
Divergence of g corresponds to mean curvature

Hence, total variation allows nonsmooth solutions, but smoothes discontinuity sets

Problem: modelling very indirect

Prior itself not informative, but only structure of

(a) Test image (ground truth) (b) Test image corrupted by additive Gaussian
minimizers ‘ T - = moie (i =0y 0% = 0.20)
| oass | e
,f”'-{:" i n=1023 n=1023
| ok =
n = 16383 n
‘ n = 65535 n = 65535
|
. |
Bayesian models for
. |
UQ questionable | |
f N\ ‘ (¢) Anisotropic TV denoising result (a = 10) (d) Isotropic TV denoising result (o = 10)
P Ree—=A i S A

’ * (a) CM ” bl " (b) MAP e ' HELMHOLTZ
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Model based regularizations

Sparsity regularization

ldea from compressed sensing: choose simple solution (minimal combinations), relax to 11
[Donoho 2006, Candes-Tao 2006]

Analysis formulation: for some frame system choose
J(u) = [(u, )]
?

Synthesis formulation (equivalent in case of orthonormal basis)

J(1) = Z ;| where u = Zci(j)i

Again similar issue as with TV: based on structure of minimizers
UQ questionable, samples not even sparse

\\ .

(a) Gaussian likelihood (b) Prior: p(u) o exp(—Alul1) (c) Resulting posterior

DESY. | The mathematics of image reconstruction | Martin Burger, 20.3.2024 (a) p(u) ocexp (=3 |lull3) (b) p(u) oc exp (—|ul1) 115



Learning in Inverse Problems

Supervised learning

Obvious idea: supervised learning
Use data pairs for input-output related by

o =Ku-+n
Minimize risk with appropriate loss L over some neural network architecture
min By, ) (L(u No (1) = B (L(w, No(Ku+ 1))
Issues of supervised learning
* (Computational) complexity of the inverse problem

« Bad generalization (network for inversion needs huge Lipschitz constant)

« Missing pairs of input-output data l'“ i |
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Learning in Image Reconstruction
Undersampled MRI

Undersampling in MRI does not suffer from these issues (partly also in CT):
« Lower complexity, since forward operator just Fourier transform, low noise

Isometry property of Fourier transform leads to low Lipschitz constant of inverse

Data pairs from existing fully sampled measurements and reconstructions

normal DNN-based Reconstruction

Philips & LUMC holykspace AM Almsterdam
Ground truth Avg rank: 1.286 Avg rank: 2.571 Avg rank: 3.000 Avg rank: 3.143 FiGS refareiice

Zero-filled Reconstruction

Radmanesh Radiology Al 2022 Knoll MRM 2019 / 2020 (fast MRI challenge)
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Learning in Image Reconstruction
Undersampled MRI

Majority of results convincing

But possible hallucinations
on few data sets

Not recognizable by
experienced radiologists

Ground truth

(courtesy Florian Knoll, Erlangen)

rm*'m I

Reconstruction

Muckley TMI 2021

~
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Further issues Iin supervised learning

,oemi-Supervised learning*

Paradigm: still solve

U € argmgn (F(Ku, ) + aJ(u))

but with regularizer J (and possibly regularization parameter) learned from a database of images
(and possibly unrelated noisy data

Bayesian interpretation: directly learn prior, form posterior with forward model
Examples

« Adversarial regularizations

* Plug and play priors: trained by denoising on images solely

- Score-based diffusion models: transform prior into Gaussian, construct biased Langevin sampling tq gosss
back to approximate sampling of posterior H _i

HELMHOLTZ
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Further issues Iin supervised learning

Adversarial regularizers

Example: adversarial learning [Lunz-Oktem-Schénlieb 18]

Given favourable images {ui};—; and unfavourable ones{vi}i-,
minimize (with respect to parameters)

% Z J(us) = % Z J(vg) + AE[(IVJ]| — 1)2]
=1 k=1

Learned regularization method is itself a random variable in terms of training data.
As n and m tend to infinity and under assumption of i.i.d. sampling from appropriate distributions
expect convergence to minimizer of deterministic population risk

E,(J) — Ey(J) + AE[(|VJ|| — 1)3]

Detailed properties of regularizer and subsequent solutions of inverse problem remain unclear r'““ |

So far, functionals learned based on data sets, but independent of inverse problem (forward operator K H _I

. .. . . HELMHOLTZ
Unclear if training data could even be solution of inverse problem IMAGING
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Learned Regularizers

Adversarial regularization with source condition

Augment with penalty that ensures training data satisfy source condition [mb-Mukherjee-Schonlieb,
NeurlPS Workshop 2021]

S IR B () P Eu (| (K)~ 0.7 (u)]*)

1=1

Undersampled and noisy CT reconstruction (Mayo Clinic Low Dose dataset)

(h) ACR-SC: 30.93, 0.85

HELMHOLTZ

(a) ground-truth (b) FBP: 21.19, 0.22 (c) TV: 2985, 0.79

IMAGING
Page 21
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Learned Regularizers

Adversarial regularization with source condition

Best case comparison:
Supervised learning and methods
with less constraints superior

However, more interpretability
and robustness with source condition
constraint

DESY. | The mathematics of image reconstruction | Martin Burger, 20.3.2024

method PSNR (dB) SSIM # param. reconstruction time (ms)
FBP 21.284+0.13  0.20+£0.02 1 37.0+4.6
TV 30.31 +£0.52  0.78 +£0.01 1 28371.4 + 1281.5
Supervised methods

U-Net 34.50 +0.65 0.90 £0.01 7215233 444 +12.5
LPD 35.69 +0.60 0.91 £0.01 1138720 279.8 £12.8
Unsupervised methods

AR 33.84+0.63 0.86+0.01 19338465 22567.1 £ 309.7
ACR 31.556+0.54 0.85£0.01 606610 109952.4 4+ 497.8
ACR-SC 31.28+0.50 0.84 £0.01 590928 105232.1 & 378.5

(1) ground-truth

(m) LPD: 34.05, 0.89

() FBP: 21.59, 0.24

(n) AR: 32.14, 0.84

(k) TV:29.16, 0.77

(o) ACR: 30.14, 0.83

(1) U-net: 32.69, 0.87

(p) ACR-SC: 29.88, 0.8:



Learned Regularizers

Adversarial regularization with source condition

Additional advantage: interpretable method allows to use superior approaches developed for variational models

Example: Bregman Iteration for Bias Correction, iterative recentering of prior. Mean SSIM improvement > 10 %
'Bregman 1967] [Hestenes 1969, Powell 1969] [Osher-mb-Goldfarb-Xu-Yin 2005]

1
T € argmin F(Ku, f) + — (J(u) — J(u®) — (pF,u— uk>)
(7 T
pFtt = p* + T K*OF (KuMt, f)

ACR-SC (GD) ACR-SC (Bregman)

ACR-SC (GD) ACR-SC (Bregman)

,

ACR-SC (GD) ACR-SC (Bregman)

ACR-SC (Bregman)

-
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Learning in Image Reconstruction
State of the Art

Common approach:

« Use appropriate neural network for data at fixed resolution

« Use appropriate, often synthetic data set to train

« Display results and compare with reconstruction method that do not use any training data

* Find out that learning surpringly leads results that look better

Few approaches to provide theoretical insights, often in finite dimension or with assumptions that make the
original image reconstruction problem well-posed

Deep neural networks can stably solve high-dimensional, noisy,

Deep Learning for Trivial Inverse Problems non-linear inverse problems Learned reconstruction methods with

verfasst von : Peter Maass 43 i a Pi a* Shili istian Petersent
Andrés Felipe Lerma Pineda Philipp Christian Petersen Convergence guarantees
Ers in: Comp d Sensing and Its Aoplication
Ver ublishing Subhadip Mukherjee*!, Andreas Hauptmann®®*, Ozan Oktem®, Marcelo Pereyra®, and

Carola-Bibiane Schénlieb' _
0P Publishing Irverse Prodlems
Learning the optimal Tikhonov regularizer for inverse problems
. . o ) . o ) . Regularization theory of the analytic HELMHOLTZ
Giovanni S. Alberti!, Ernesto De Vito!, Matti Lassas?, Luca Ratti', Matteo Santacesaria’ deep prior approach IMAGING

UEDT. | LHE HIdUICHIAUUS Ul lITdye 1ECUTISUULUUIT | IVIAIUTT DUIYET, £U.5.4U”L4 Shomens Al Page 24



Learning in Image Reconstruction

Open issues

« How do learned methods behave in the infinite-dimensional limit ?

Do learned methods provide regularization with respect to data noise ? (Guarantees in certain metrics)
 How do typical solutions of a learned regularization method look like ? (Smoothness, bias, ..)

« What is the impact of the specific training approach

« Generalization aspect: do we obtain a convergent regularization method with high probability when
trained on finite data ?

rx“'n I

HELMHOLTZ
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Learning in Image Reconstruction
A way to theory

As usual in deep learning we face the question whether we can proof anything or give at least a theoretical
insight

Possible answer consider simplified model

Here: learning a spectral regularizer [Bauermeister-mb-Moller 2021][Kabri-Auras-Riccio-Benning-Moéller-mb 23]

Use singular value decomposition of forward operator K

o0
Ku= Z T (U, Up ) Uy
n=1

Setup: noise independent of u, unbiased

fo=Ku+n E(n) =0 H

HELMHOLTZ
IMAGING
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Learning in Image Reconstruction
A way to theory

Supervised learning: from pairs of ground truth and noisy data learn spectral regularization function g in
6. O\ __ ) J
R(f% ¢°) = § 9°(0n) (", vn)un
n

g = argmin Eu,V(||u_R(f55 9)”2) gn = g(on)
g

Semi-supervised learning: look for functional of the form (with adversarial approaches as before)

J(u) = Z)\n(u, un)Q |
n=1 rm‘ m I

HELMHOLTZ
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Learning in Image Reconstruction

Four learning approaches

Supervised learning (reduce to learn )

argmin E, ,([lu — R(f°; ¢)||?)

Bayesian model with Gauss assumption (trivial covariance, MAP = CM) ¥, = diag(IL,), %, = diag(A,)

U = argmin ||Ku — vH;nl + HuH;ul

Adversarial learning

Adversarial learning with source condition

Eu(J(u)) — Eyy(J(u+ K 'v))

ELMHOLTZ
IMAGING
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Learning in Image Reconstruction

Four learning approaches

Models allow for explicit computation of minimizers and comparison

Assume for simplicity zero mean on data set
Eyu(u) =0
Notation: power and noise in frequency

1T, = By ({u, Un>2)

Ay = Ey((n, vn)") e

HELMHOLTZ
IMAGING
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Learning in Image Reconstruction

1. Supervised learning
Minimizing expected loss with respect to parameters

Ey o [[lu— R(f* 9)II”] =E (1= 00gn)*(w, wn)* + g, va) — 2(u, ) (v, vn)

n .

— (1— crngn)2 11, + giAn,

Training with Noise

LeadS tO is Equivalent to Tikhonov Regularization

Christopher M. Bishop
Current address:

O' l Z O' Microsoft Research,

—_— T T T 7 J J Thomson Avenue,
p— p— Cambridge, CB3 0FB, U.K.

gn cmishop@microsoft.com

0-2 Hn _|_ An 0-7% _|_ % http://research.microsoft.com/~cmbishop
n

Published in Neural Computation 7 No. 1 (1995) 108-116.

Abstract

It is well known that the addition of noise to the input data of a neural network during
training can, in some circumstances, lead to significant improvements in generalization
performance. Previous work has shown that such training with noise is equivalent to a
form of regularization in which an extra term is added to the error function. However,
the regularization term, which involves second derivatives of the error function, is not
bounded below, and so can lead to difficulties if used directly in a learning algorithm
based on error minimization. In this paper we show that, for the purposes of network
training, the regularization term can be reduced to a positive definite form which involves
only first derivatives of the network mapping. For a sum-of-squares error function, the
regularization term belongs to the class of generalized Tikhonov regularizers. Direct
ation of the regularized error function provides a practical alternative to training
with noise.

minin
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Learning in Image Reconstruction
2. Bayes

Due to diagonal choice

Y, = diag(Il,), 2ip = diag(Ay)

Leads again to effective regularization

g n (U, Up)u

B O'nﬂn oy

<
e

DESY. | The mathematics of image reconstruction | Martin Burger, 20.3.2024
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Learning in Image Reconstruction
3./4. Adversarial

For the adversarial methods compute

i = argmin || Ku - 0 || + aJ(u)

With diagonal J we have

Eu(J(u)) = Eugy(J(u+K )

:Eu(Z)\n(u,un — mZ)\ U, Uy, ) —I—Z (v, vy, )
An
_ZJ_%AR
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Learning in Image Reconstruction

Effective spectral regularization

O
Effective regularization Z fU fun

Supervised / Bayes
oplly, On
g p— p—
" O'%Hn+An O',,%—F —ﬁz

Adversarial
on (211,02 + A,) B On

gn —

o2 (2[1,02 + A,) + %An o+ %QHHBO'A%Z-AH

Adversarial with source condition
O'an On

aAp
B n

DESY. | The mathematics of image reconstruction | Martin Burger, 20.3.2024
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Learning in Image Reconstruction

Effective spectral regularization

Effective regularization of high frequencies under white noise
A, ~ 0 II,, — 0

Supervised / Bayes / Adversarial SC

On Hn
A, T InT5

F\"i‘\ |
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Learning in Image Reconstruction

Do we reconstruct training data ?

Range condition

u € R(R(-,9))

If and only if

Compare source condition

1 i
Zn—%<w,un)2<oo, u= K*w B

i

H

HELMHOLTZ
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Learning in Image Reconstruction

Expected smoothness of reconstructions

Define

~

[, = By, ((R(Ku + 1,3), un)?)

Can be computed efficiently

o211, 1
11, = 11,

1, =
o211, + A, 1 + L

o 7

Note: reconstructed solutions are always smoother than clean training data (oversmoothed)

Explanation from regularization applied to rough noise rm I

HELMHOLTZ
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Learning in Image Reconstruction

Spectral regularization in tomography

Training data for different noise level
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Learning in Image Reconstruction

Spectral regularization in tomography

Oversmoothing in computational results

STV JANY for n > 400

57 .

42 = 0.005
— 32 =0.01

32 = 0.015

4 -

3

2

1A

0

500 1000 1500 2000 2500 3000 3500 4000
n

DESY. | The mathematics of image reconstruction | Martin Burger, 20.3.2024

10

Learned coefficients g,

Ay A

1000

2000 3000

r\\' M I

H

HELMHOLTZ
IMAGING

Page 38




Learning in Image Reconstruction

Spectral regularization in tomography

4]

Typical reconstructions

10

(c) 82 = 0.01
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Convergence of learned regularization

. L . . 41
Consider a sequence of learned regularizations with respect to noise level

5 onlly On
In — 2 — A
O'an + An O',,% + H—Z

Assumptions:
(1) Variance of noise is bounded by 4, more precisely

6% = max A,,.
n

(2) Clean data is smoother than noise, more precisely there exist ¢ > 0 and ny € N such
that
A, > cd* I,

for all n > ny.
(3) The sequence of 1/, is summable, i.e.,

Zﬂn<oo.



Convergence of learned regularization

. L . . 42
Consider a sequence of learned regularizations with respect to noise level

5 onlly On
In — 2 — A
Uan + An O'?% + H_Z

Theorem. Let Assumptions (1)-(3) hold. Then R(-;3°) is continuous and
for every f € D(KT)

E,(|KTf — R(f;3°)|1?) = 0

as 0 — 0.

r&“'ﬂ I
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Supervised learning

2 43
=0T = RO g = > (o) = gl )
= Z U, Up) = Gn f Un))Z
= Z Ungn u un>2 + gi(yj Un>2 — 2(“: un><V7 vn>
"Eu [lu— R 9IF] =B | S0 — 0uga) 2w, 1) + 920, 02)? — 2w, un) (v, v,)
— Z_(l — Ungn) 11, + gnAna
ey 1 =K [(’LL, un>2] An =K [(Va Un>2] 3




