

II. Frequency Principle/Spectral Bias

Yaoyu Zhang

Institute of Natural Sciences & School of Mathematical Sciences

Shanghai Jiao Tong University

FAU MoD Course

Deep learning is no longer a black-box

Friedrich-Alexander-Universität Research Center for Mathematics of Data | MoD

FAU MoD Course

Towards a mathematical foundation of Deep Learning: From phenomena to theory

Yaoyu Zhang

SHANGHAI JIAO TONG UNIVERSITY

WWW.MOD.FAU.EU

#FAUMoDCourse

WHEN
Fri.-Thu. May 2-8, 2025
10:00H (Berlin time)

WHERE On-site / Online

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Room H11 / H16 Felix-Klein building Cauerstraße 11, 91058 Erlangen, Bavaria, Germany

Live-streaming: www.fau.tv/fau-mod-livestream-2025

*Check room/day on websit

Establishing a mathematical foundation for deep learning is a significant and challenging endeavor in mathematics. Recent theoretical advancements are transforming deep learning from a black box into a more transparent and understandable framework. This course offers an in-depth exploration of these developments, emphasizing a promising phenomenological approach. It is designed for those seeking an intuitive understanding of how neural networks learn from data, as well as an appreciation of their theoretical underpinnings. (...)

Session Titles:

- 1. Mysteries of Deep Learning
- 2. Frequency Principle/Spectral Bias
- 3. Condensation Phenomenon
- 4. From Condensation to Loss Landscape
- 5. From Condensation to Generalization Theory

Overall, this course serves as a gateway to the vibrant field of deep learning theory, inspiring participants to contribute fresh perspectives to its advancement and application.

Towards a Mathematical Foundation of Deep Learning: From Phenomena to Theory

Date

Fri. – Thu. May 2 – 8, 2025

Session Titles

- 1. Mysteries of Deep Learning
- 2. Frequency Principle/Spectral Bias
- 3. Condensation Phenomenon
- 4. From Condensation to Loss Landscape Analysis
- 5. From Condensation to Generalization

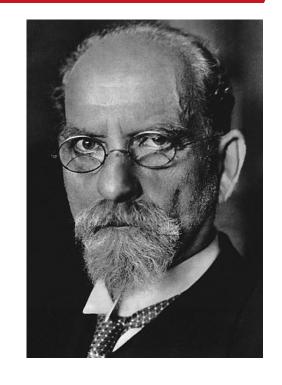
A phenomenological methodology

- 1. Suspension: Suspend the prior and belief one may hold and focus on the facts about the object.
- 2. Cumulation: Discover and cumulate all possible facts about the object. Prioritize the more informative ones.
- 3. Emergence: A new framework shall emerge once enough pieces are uncovered.

Cumulation of phenomena from experience

"Natural objects, for example, must be experienced before any theorizing about them can occur"

- Edmund Husserl

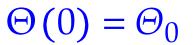


Husserl warns against this inversion of process, where theories can eclipse, misshape, or entirely ignore the vital qualities encountered in direct perception.

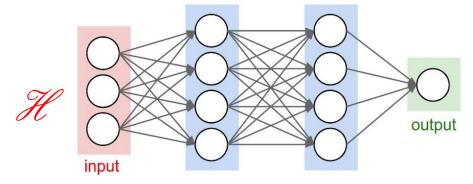
How to experience deep learning?

Problem: Given $\mathscr{D}:\{(x_i,y_i)\}_{i=1}^n$ and $\mathscr{H}:\{f(\cdot;\Theta)|\Theta\in$

 \mathbb{R}^m }, find $f \in \mathcal{H}$ such that $f(x_i) = y_i$ for $i = 1, \dots, n$.

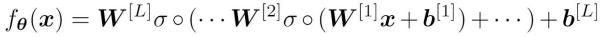


$$L(\Theta) = \frac{1}{2n} \sum_{i=1}^{n} (f(x_i;\Theta) - y_i)^2$$



General observation:

 $f(x_i;\Theta(\infty))$ often generalize well even when $m \gg n$.



How to experience deep learning?

Two key objects

Trajectory in function space

$$f(\cdot,t):\mathbb{R}^+\to\mathcal{H}$$

Trajectory in parameter space

$$\Theta(t):\mathbb{R}^+\to\mathbb{R}^m$$

Common strategy: choose proper statistics for observation.

Limitation: choice of statistics reflect our bias, no guarantee for effectiveness.

Can we observe the whole trajectory?



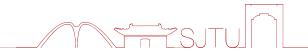
Frequency Principle

Evolution of neural network output function

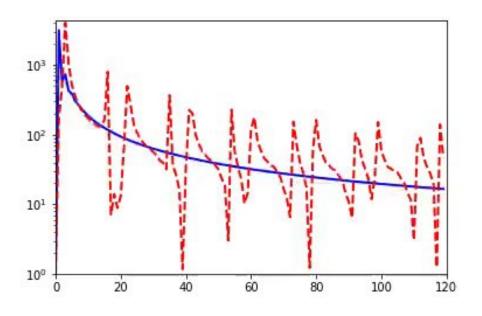
 $f(x.\theta(t))$



tanh-DNN, 200-100-100-50



Through the lens of Fourier transform $\hat{f}(\xi,\theta(t))$

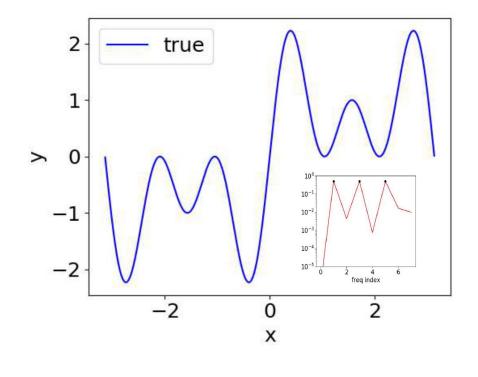


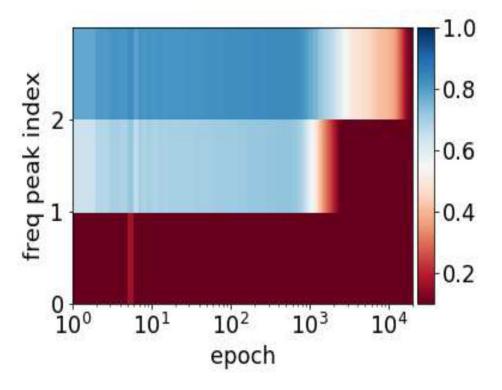
Frequency Principle (F-Principle):

DNNs often fit training data from low to high frequencies during the training.

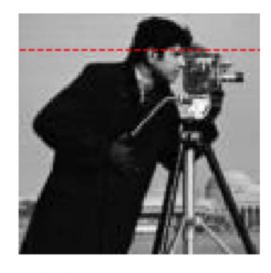
Xu, Zhang, Xiao, *Training behavior of deep neural network in frequency domain*, 2018 Nasim Rahaman et al, *On the Spectral Bias of Neural Networks*, 2018

Synthetic curve with equal amplitude





How DNN fits a 2-d image?



(a) True image

(b) DNN output

Target: image $I(\mathbf{x}): \mathbb{R}^2 \to \mathbb{R}$

x: location of a pixel

 $I(\mathbf{x})$: grayscale pixel value

High-dimensional real data?

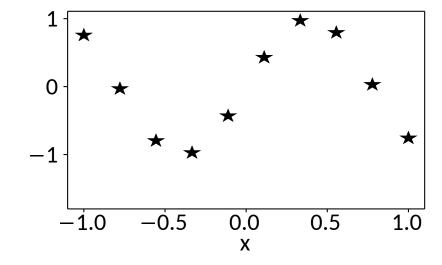


Image frequency (NOT USED)

 This frequency corresponds to the rate of change of intensity across neighboring pixels.

zero freq Same color

high freq Sharp edge

*

Response frequency

 Frequency of a general Input-Output mapping f.

$$\hat{f}(\mathbf{k}) = \int f(\mathbf{x}) e^{-i2\pi \mathbf{k} \cdot \mathbf{x}} d\mathbf{x}$$

MNIST: $\mathbb{R}^{784} \to \mathbb{R}^{10}$, $\mathbf{k} \in \mathbb{R}^{784}$

"panda" 57.7% confidence



 $sign(\nabla_x J(\theta, x, y))$ "nematode"
8.2% confidence

 $x + \epsilon \operatorname{sign}(\nabla_x J(\theta, x, y))$ "gibbon"

99.3 % confidence

Goodfellow et al.

high freq: Adversarial example

+.007 ×

Examining F-Principle for high-dim real problems

Nonuniform Discrete Fourier transform (NUDFT) for training dataset $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$:

$$\hat{y}_{\mathbf{k}} = \frac{1}{n} \sum_{i=1}^{n} y_i e^{-i2\pi \mathbf{k} \cdot \mathbf{x}_i}, \hat{h}_{\mathbf{k}}(t) = \frac{1}{n} \sum_{i=1}^{n} h(\mathbf{x}_i, t) e^{-i2\pi \mathbf{k} \cdot \mathbf{x}_i}$$

Difficulty:

• Curse of dimensionality, i.e., $\#\mathbf{k}$ grows exponentially with dimension of problem d.

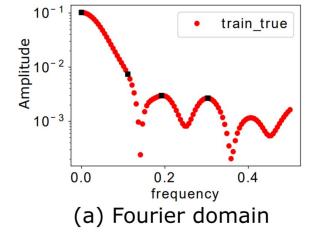
Our approaches:

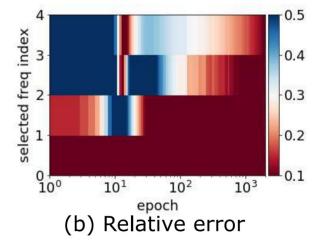
- Projection, i.e., choose $\mathbf{k} = k\mathbf{p}_1$
- Filtering

Projection approach

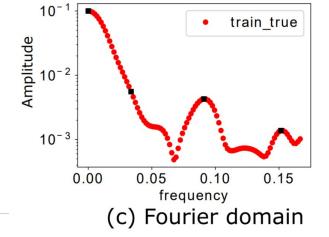
Relative error: $\Delta_F(k) = \left| \hat{h}_k - \hat{y}_k \right| / |\hat{y}_k|$

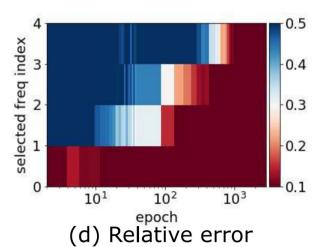
MNIST



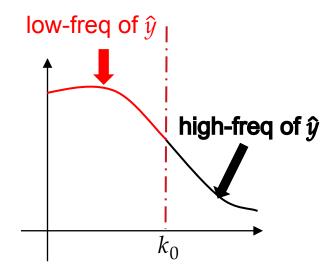


CIFAR10



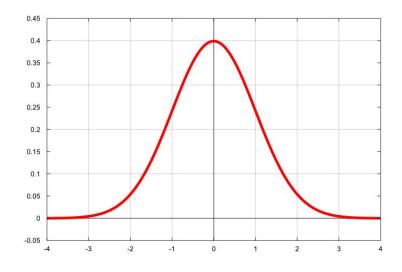


Decompose frequency domain by filtering



$$\mathbf{y}_i^{\text{low},\delta} = (\mathbf{y} * G^\delta)_i$$

$$\mathbf{y}_i^{ ext{high},\delta} riangleq \mathbf{y}_i - \mathbf{y}_i^{ ext{low},\delta}$$



$$e_{\text{low}} = \left(\frac{\sum_{i} |\mathbf{y}_{i}^{\text{low},\delta} - \mathbf{h}_{i}^{\text{low},\delta}|^{2}}{\sum_{i} |\mathbf{y}_{i}^{\text{low},\delta}|^{2}}\right)^{\frac{1}{2}}$$

$$e_{\text{high}} = \left(\frac{\sum_{i} |\mathbf{y}_{i}^{\text{high},\delta} - \mathbf{h}_{i}^{\text{high},\delta}|^{2}}{\sum_{i} |\mathbf{y}_{i}^{\text{high},\delta}|^{2}}\right)^{\frac{1}{2}}$$

F-Principle in high-dim space

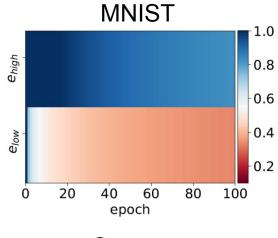
0.8

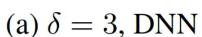
0.6

0.4

0.2

100



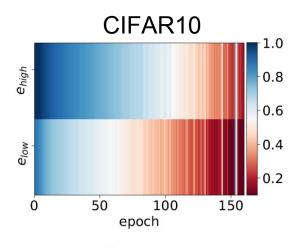


ehigh

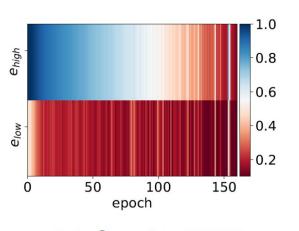
20

40

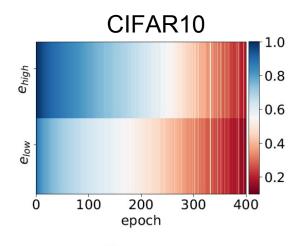
epoch



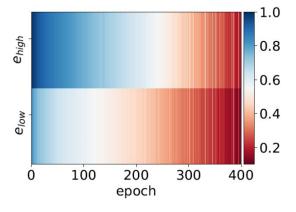
(b) $\delta = 3$, CNN



(e)
$$\delta = 7$$
, CNN



(c)
$$\delta = 7$$
, VGG



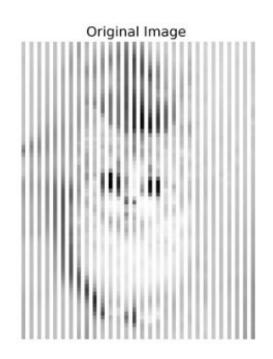
(f)
$$\delta = 10$$
, VGG

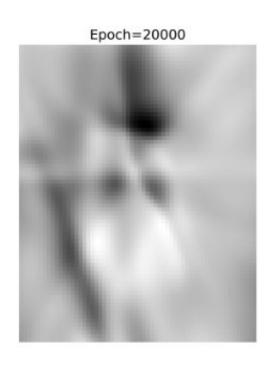
60

80

Implication of F-Principle

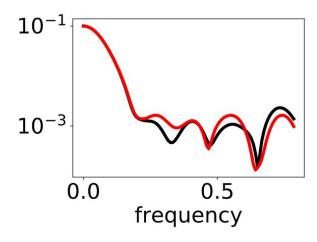
Frequency principle for 2-d image restoration



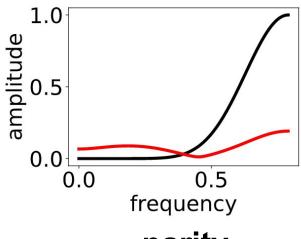


Generalization puzzle

F-Principe: DNNs prefer low frequencies



CIFAR10



parity

For
$$\vec{x} \in \{-1,1\}^n$$

$$f(\vec{x}) = \prod_{j=1}^n x_j,$$

Even #'-1'
$$\rightarrow$$
 1;

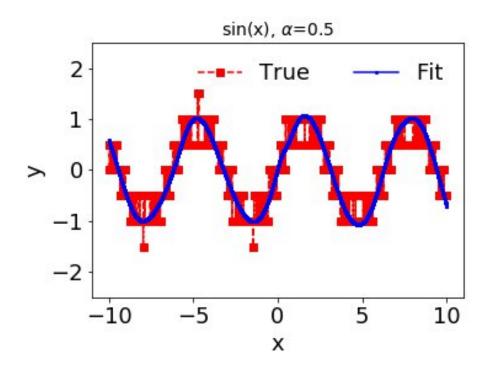
Odd #'-1'
$$\rightarrow$$
 -1.

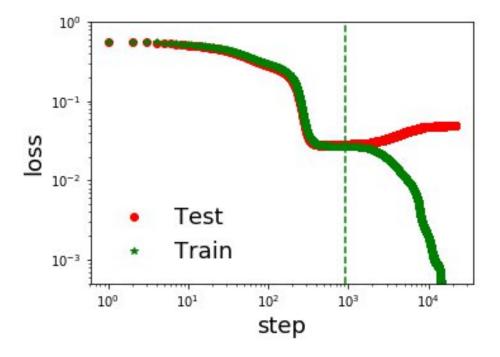
Test accuracy: 72% %>>10%

Test accuracy: ~50%, random guess

Effect of early stopping

When should one stop the backpropagation and use the current parameters?





Theory of F-Principle

Theory in a idealized setting

• Consider a tanh-DNN of one-hidden layer for fitting a 1-d function f

$$h(x) = \sum_{j=1}^{m} a_j \sigma(w_j x + b_j),$$

$$\hat{h}(k) \approx \sum_{j=1}^{m} a_j \exp(\frac{ib_j}{w_j}) \exp\left(-\left|\frac{\pi k}{2w_i}\right|\right),$$

Define the loss at frequency k

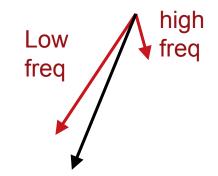
$$L(k) = \frac{1}{2} \left| \hat{h}(k) - \hat{f}(k) \right|^2$$

By Parseval's theorem: $L = \int L(k) dk = \int \frac{1}{2} |f(x) - h(x)|^2 dx$

Compute the gradient by the loss in Fourier domain

$$\theta \leftarrow \theta - \eta \sum \frac{\partial L(k)}{\partial \theta}$$

$$\left| \frac{\partial L(k)}{\partial \theta} \right| \approx A(k) \exp\left(-\left| \frac{\pi k}{2w_i} \right| \right) G(\theta, k)$$
 Low freq Where $A(k) = \left| \hat{h}(k) - \hat{f}(k) \right|$



• A(k) > 0:

If w_i is small, $\exp(-|\pi k/2w_i|)$ dominate, low frequencies dominate. For $w_i \in B_{\delta}$, center at 0 with radius δ , if δ is small, contribution of high frequency loss is negligible.

• $A(k) \approx 0$: small contribution from L(k)

Insight: smoothness/regularity of activation function $\sigma(\cdot)$ can be converted into F-Principle through gradient-based training.

The NTK regime

$$L(\Theta) = \sum_{i=1}^{n} (h(x_i; \Theta) - y_i)^2$$

$$\dot{\Theta} = -\nabla_{\Theta} L(\Theta)$$

•
$$\partial_t h(x;\Theta) = -\sum_{i=1}^n K_{\Theta}(x,x_i) (h(x_i;\Theta) - y_i)$$

Where
$$K_{\Theta}(x,x') = \nabla_{\Theta}h(x;\Theta) \cdot \nabla_{\Theta}h(x';\Theta)$$

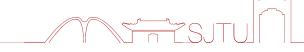
Neural Tangent Kernel (NTK) regime:

$$K_{\Theta(t)}(x,x') \approx K_{\Theta(0)}(x,x')$$
 for any t.

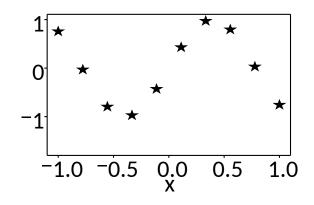
Theorem 1. For a network of depth L at initialization, with a Lipschitz nonlinearity σ , and in the limit as the layers width $n_1, ..., n_{L-1} \to \infty$ sequentially, the NTK $\Theta^{(L)}$ converges in probability to a deterministic limiting kernel:

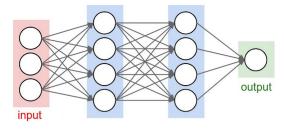
$$\Theta^{(L)} \to \Theta^{(L)}_{\infty} \otimes Id_{n_L}.$$

Jacot et al., 2018



Problem simplification





$$f_{m{ heta}}(m{x}) = m{W}^{[L]} \sigma \circ (\cdots m{W}^{[2]} \sigma \circ (m{W}^{[1]} m{x} + m{b}^{[1]}) + \cdots) + m{b}^{[L]}$$

Two-layer ReLU NN
$$h(x;\Theta) = \sum_{i=1}^{n} w_i \sigma (r_i(x+l_i))$$

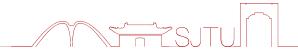
find

$$\dot{\Theta} = -\nabla_{\Theta} L\left(\Theta\right)$$

Initialized by special Θ_0

Kernel gradient flow

$$\partial_t f(x,t) = -\sum_{i=1}^n K_{\Theta_0}(x,x_i) \left(f(x_i,t) - y_i \right)$$



Some basics of Fourier transform

Definition 1. Given a nonzero vector $\mathbf{w} \in \mathbb{R}^d$, we define the delta-like function $\delta_{\mathbf{w}} : \mathcal{S}(\mathbb{R}^d) \to \mathbb{R}$ such that for any $\phi \in \mathcal{S}(\mathbb{R}^d)$,

$$\langle \delta_{\boldsymbol{w}}, \phi \rangle = \int_{\mathbb{R}} \phi(y\boldsymbol{w}) \, \mathrm{d}y.$$
 (6)

Lemma 1 (Scaling property of delta-like function). Given any nonzero vector $\mathbf{w} \in \mathbb{R}^d$ with $\hat{\mathbf{w}} = \frac{\mathbf{w}}{\|\mathbf{w}\|}$, we have

$$\frac{1}{\|\boldsymbol{w}\|^d} \delta_{\hat{\boldsymbol{w}}} \left(\frac{\boldsymbol{x}}{\|\boldsymbol{w}\|} \right) = \delta_{\boldsymbol{w}}(\boldsymbol{x}). \tag{7}$$

Proof This is proved by changing of variables. In fact, for any $\phi \in \mathcal{S}(\mathbb{R}^d)$, we have

$$\left\langle \frac{1}{\|\boldsymbol{w}\|^{d}} \delta_{\hat{\boldsymbol{w}}} \left(\frac{\cdot}{\|\boldsymbol{w}\|} \right), \phi(\cdot) \right\rangle_{\mathcal{S}'(\mathbb{R}^{d}), \mathcal{S}(\mathbb{R}^{d})} = \left\langle \delta_{\hat{\boldsymbol{w}}}(\cdot), \phi(\|\boldsymbol{w}\| \cdot) \right\rangle_{\mathcal{S}'(\mathbb{R}^{d}), \mathcal{S}(\mathbb{R}^{d})}$$

$$= \int_{\mathbb{R}} \phi\left(\|\boldsymbol{w}\| y \hat{\boldsymbol{w}} \right) dy$$

$$= \int_{\mathbb{R}} \phi(y \boldsymbol{w}) dy$$

$$= \left\langle \delta_{\boldsymbol{w}}(\cdot), \phi(\cdot) \right\rangle_{\mathcal{S}'(\mathbb{R}^{d}), \mathcal{S}(\mathbb{R}^{d})}.$$

Some basics of Fourier transform

Lemma 2 (Fourier transforms of network functions). For any unit vector $\boldsymbol{\nu} \in \mathbb{R}^d$, any nonzero vector $\boldsymbol{w} \in \mathbb{R}^d$ with $\hat{\boldsymbol{w}} = \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}$, and $g \in \mathcal{S}'(\mathbb{R})$ with $\mathcal{F}[g] \in C(\mathbb{R})$, we have, in the sense of distribution,

(a)
$$\mathcal{F}_{\boldsymbol{x}\to\boldsymbol{\xi}}[g(\boldsymbol{\nu}^{\mathsf{T}}\boldsymbol{x})](\boldsymbol{\xi}) = \delta_{\boldsymbol{\nu}}(\boldsymbol{\xi})\mathcal{F}[g](\boldsymbol{\xi}^{\mathsf{T}}\boldsymbol{\nu}),$$
 (8)

(b)
$$\mathcal{F}_{\boldsymbol{x}\to\boldsymbol{\xi}}[g(\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x}+b)](\boldsymbol{\xi}) = \delta_{\boldsymbol{w}}(\boldsymbol{\xi})\mathcal{F}[g]\left(\frac{\boldsymbol{\xi}^{\mathsf{T}}\hat{\boldsymbol{w}}}{\|\boldsymbol{w}\|}\right)e^{2\pi i\frac{b}{\|\boldsymbol{w}\|}\boldsymbol{\xi}^{\mathsf{T}}\hat{\boldsymbol{w}}},$$
 (9)

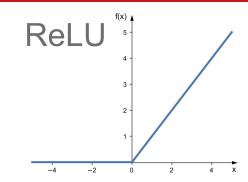
(c)
$$\mathcal{F}_{\boldsymbol{x}\to\boldsymbol{\xi}}[\boldsymbol{x}g(\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x}+b)](\boldsymbol{\xi}) = \frac{\mathrm{i}}{2\pi}\nabla_{\boldsymbol{\xi}}\left[\delta_{\boldsymbol{w}}(\boldsymbol{\xi})\mathcal{F}[g]\left(\frac{\boldsymbol{\xi}^{\mathsf{T}}\hat{\boldsymbol{w}}}{\|\boldsymbol{w}\|}\right)\mathrm{e}^{2\pi\mathrm{i}\frac{b}{\|\boldsymbol{w}\|}\boldsymbol{\xi}^{\mathsf{T}}\hat{\boldsymbol{w}}}\right].$$
 (10)

Linear F-Principle (LFP) dynamics

2-layer NN: $h(x;\Theta) = \sum_{i=1}^{n} w_i \text{ReLU}(r_i(x+l_i))$

Assumptions:

(i) NTK regime, (ii) sufficiently wide distribution of l_i .



$$\partial_{t} \hat{h}(\xi,t) = -\left[\frac{4\pi^{2}\langle r^{2}w^{2}\rangle}{\xi^{2}} + \frac{\langle r^{2}\rangle + \langle w^{2}\rangle}{\xi^{4}}\right] \left(\hat{h}_{p}(\xi,t) - \hat{f}_{p}(\xi,t)\right)$$

 $\langle \cdot \rangle$: mean over all neurons at initialization

f: target function; $(\cdot)_p = (\cdot)p$, where $p(x) = \frac{1}{n} \sum_{i=1}^n \delta(x - x_i)$;

 \uparrow : Fourier transform; ξ : frequency

Preference induced by LFP

<u>dvnamics</u>

$$\partial_{t} \hat{h}(\xi,t) = -\left[\frac{4\pi^{2}\langle r^{2}w^{2}\rangle}{\xi^{2}} + \frac{\langle r^{2}\rangle + \langle w^{2}\rangle}{\xi^{4}}\right] \left(\hat{h_{p}}(\xi,t) - \hat{f_{p}}(\xi,t)\right)$$
low frequency
$$\min_{h \in F_{\gamma}} \int \left[\frac{4\pi^{2}\langle r^{2}w^{2}\rangle}{\xi^{2}} + \frac{\langle r^{2}\rangle + \langle w^{2}\rangle}{\xi^{4}}\right] |\hat{h}(\xi)|^{2} d\xi$$
preference
$$\text{s.t. } h(x_{i}) = y_{i} \text{ for } i = 1, \dots, n$$

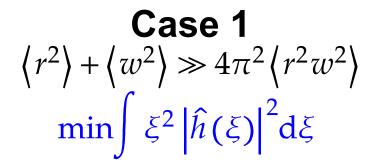
Case 1: ξ^{-2} dominant

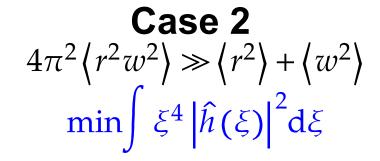
• $\min \int \xi^2 |\hat{h}(\xi)|^2 d\xi \sim \min \int |h\nu(x)|^2 d\xi \rightarrow \text{linear spline}$

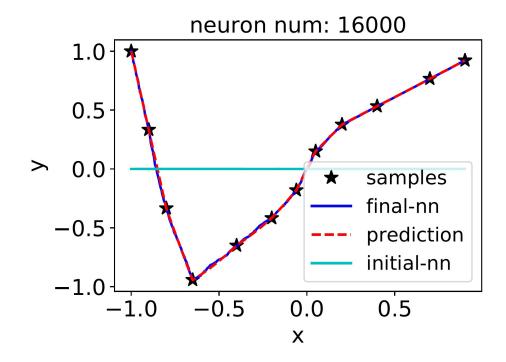
Case 2: ξ^{-4} dominant

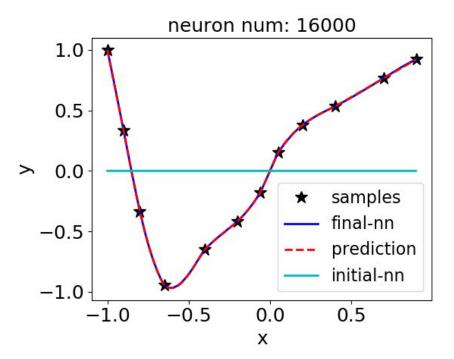
• $\min \int \xi^4 \left| \hat{h}(\xi) \right|^2 d\xi \sim \min \int |h\nu(x)|^2 d\xi \rightarrow \text{cubic spline}$

Regularity can be changed through initialization









High-dimensional Case

$$\partial_{t} \hat{h}(\xi,t) = -\left[\frac{\left\langle |r|^{2}\right\rangle + \left\langle w^{2}\right\rangle}{|\xi|^{d+3}} + \frac{4\pi^{2}\left\langle |r|^{2}w^{2}\right\rangle}{|\xi|^{d+1}}\right] \left(\widehat{h_{p}}(\xi,t) - \widehat{f_{p}}(\xi,t)\right)$$

where f: target function; $(\cdot)_p = (\cdot)p$, where $p(x) = \frac{1}{n}\sum_{i=1}^n \delta(x-x_i)$;

 $\widehat{(\cdot)}$: Fourier transform; ξ : frequency.

Theorem (informal). Solution of LFP dynamics at $t \to \infty$ with initial value $h_{\rm ini}$ is the same as solution of the following optimization problem

$$\min_{h-h_{\text{ini}}\in F_{\gamma}} \int \left[\frac{\left\langle |r|^{2} \right\rangle + \left\langle w^{2} \right\rangle}{|\xi|^{d+3}} + \frac{4\pi^{2} \left\langle |r|^{2} w^{2} \right\rangle}{|\xi|^{d+1}} \right]^{-1} \left| \hat{h}\left(\xi\right) - \hat{h}_{\text{ini}}(\xi) \right|^{2} d\xi$$

s.t.
$$h(X) = Y$$
.

FP-norm and FP-space

We define the FP-norm for all function $h \in L^2(\Omega)$:

$$\|h\|_{\gamma} := \|\hat{h}\|_{H_{\Gamma}} = \left(\sum_{k \in \mathbb{Z}^{d*}} \gamma^{-2} (k) \left| \hat{h} (k) \right|^{2} \right)^{1/2}$$

Next, we define the FP-space:

$$F_{\gamma}(\Omega) = \{h \in L^2(\Omega) \colon \|h\|_{\gamma} < \infty\}$$

A priori generalization error bound

Theorem (informal). Suppose that the real-valued target function $f \in F_{\gamma}(\Omega)$, h_n is the solution of the regularized model

$$\min_{h \in F_{\gamma}} ||h||_{\gamma} \text{ s.t. } h(X) = Y$$

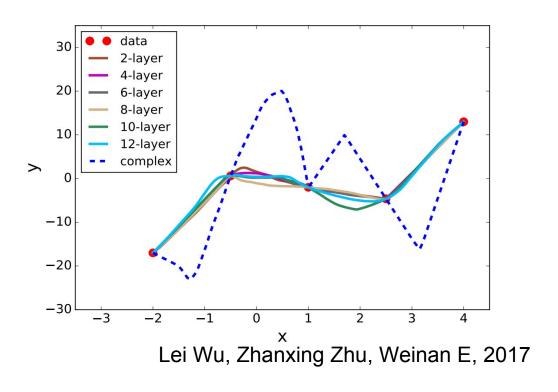
Then for any $\delta \in (0,1)$ with probability at least $1-\delta$ over the random training samples, the population risk has the bound

$$L(h_n) \le (\|f\|_{\infty} + 2 \|f\|_{\gamma} \|\gamma\|_{l^2}) \left(\frac{2}{\sqrt{n}} + 4\sqrt{\frac{2\log(4/\delta)}{n}}\right)$$

Revisit Leo Breiman's problems (1995)

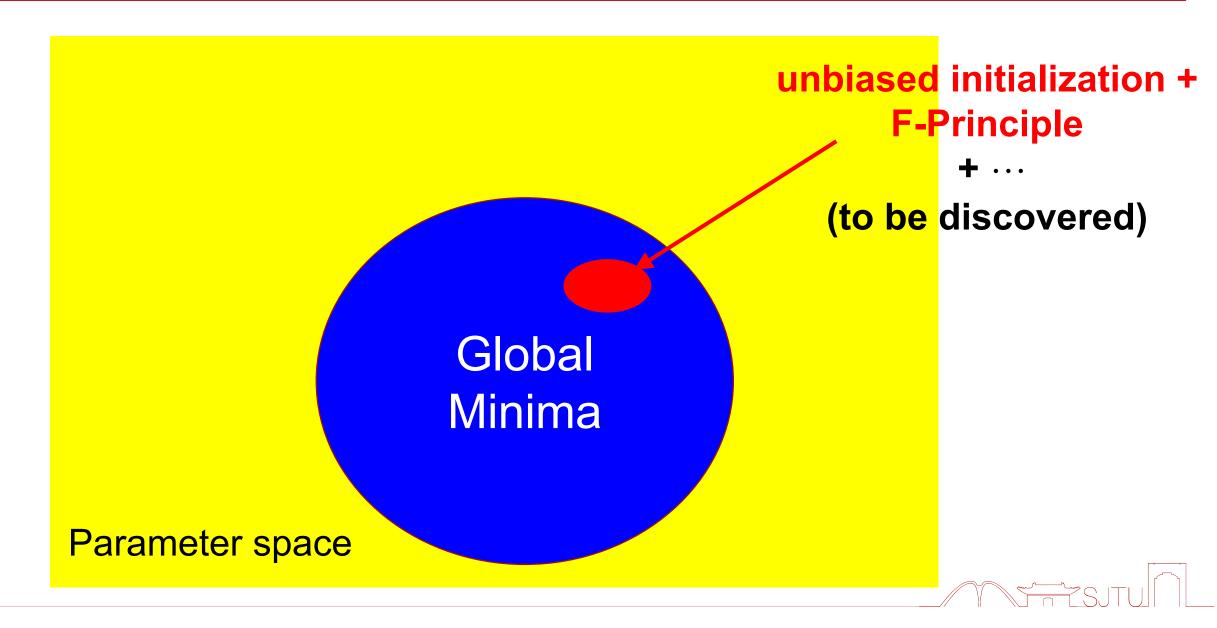
- 1. Why don't heavily parameterized neural networks overfit the data?
- 2. What is the effective number of parameters?
- 3. Why doesn't backpropagation head for a poor local minima?
- 4. When should one stop the backpropagation and use the current parameters?

Overparameterized DNNs still generalize well



#para(~1000)>>#data: 5

A picture for the generalization puzzle



References

- 1. First Paper: Zhiqin Xu, Yaoyu Zhang, Yanyang Xiao, <u>"Training Behavior of Deep Neural Network in Frequency Domain,"</u> ICONIP, pp. 264-274, 2019. (arXiv:1807.01251, Jul 2018)
- 2. 2021 World Artificial Intelligence Conference Youth Outstanding Paper Nomination Award: Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, Zheng Ma, <u>"Frequency Principle: Fourier Analysis Sheds Light on Deep Neural Networks,"</u> CiCP 28(5). 1746-1767, 2020.
- 3. Initialization effect: Yaoyu Zhang, Zhi-Qin John Xu, Tao Luo, Zheng Ma, <u>"A Type of Generalization Error Induced by Initialization in Deep Neural Networks,"</u> MSML 2020.
- **4. Linear Frequency Principle**: Yaoyu Zhang, Tao Luo, Zheng Ma, Zhi-Qin John Xu, <u>"Linear Frequency Principle Model to Understand the Absence of Overfitting in Neural Networks,"</u> Chinese Physics Letters (CPL) 38(3), 038701, 2021.
- 5. Tao Luo, Zheng Ma, Zhi-Qin John Xu, Yaoyu Zhang, <u>"Theory of the Frequency Principle for General Deep Neural Networks,"</u> CSIAM Trans. Appl. Math. 2 (2021), pp. 484-507.
- **6. Linear Frequency Principle**: Tao Luo, Zheng Ma, Zhi-Qin John Xu, Yaoyu Zhang, "On the exact computation of linear frequency principle dynamics and its generalization", SIAM Journal on Mathematics of Data Science 4 (4), 1272-1292, 2022.
- 7. Minimal decay in frequency domain: Tao Luo, Zheng Ma, Zhiwei Wang, Zhi-Qin John Xu, Yaoyu Zhang, "An Upper Limit of Decaying Rate with Respect to Frequency in Deep Neural Network," MSML 2022.
- **8. Overview**: Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, "Overview Frequency Principle/Spectral Bias in Deep Learning," Communications on Applied Mathematics and Computation (2024): 1-38.

DNNs are not black boxes--Problems

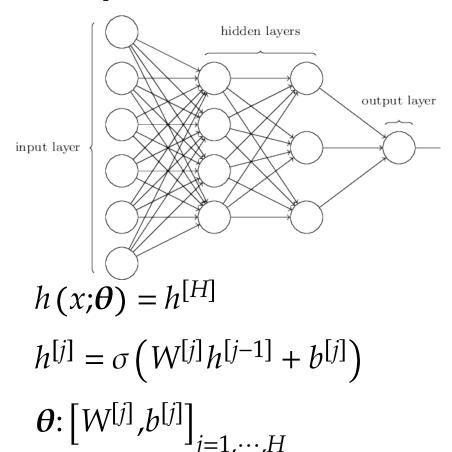
- Mow can neural networks be prevented from overfitting to noise in the training data?
- Mow can the convergence towards high-frequency components of the target function be improved during training?
- Is it possible to design a model that prioritizes fitting high-frequency components before low-frequency ones during training?
- What characteristics of a target function or dataset make it difficult for deep neural networks to generalize?
- What methods or conditions can be employed to induce deep neural networks to overfit the training data, resulting in a large generalization error?

Thanks!

饮水思源 爱国荣校

Impact of initialization

Deep Neural Network



Example: Two-layer NN
$$h_{\theta}(x) = \sum_{i=1}^{m_1} w_i^{[2]} \sigma(w_i^{[1]} x + b_i^{[1]})$$

Initialization

$$\theta(0): [W^{[j]}(0), b^{[j]}(0)]_{j=1,\dots,H}$$

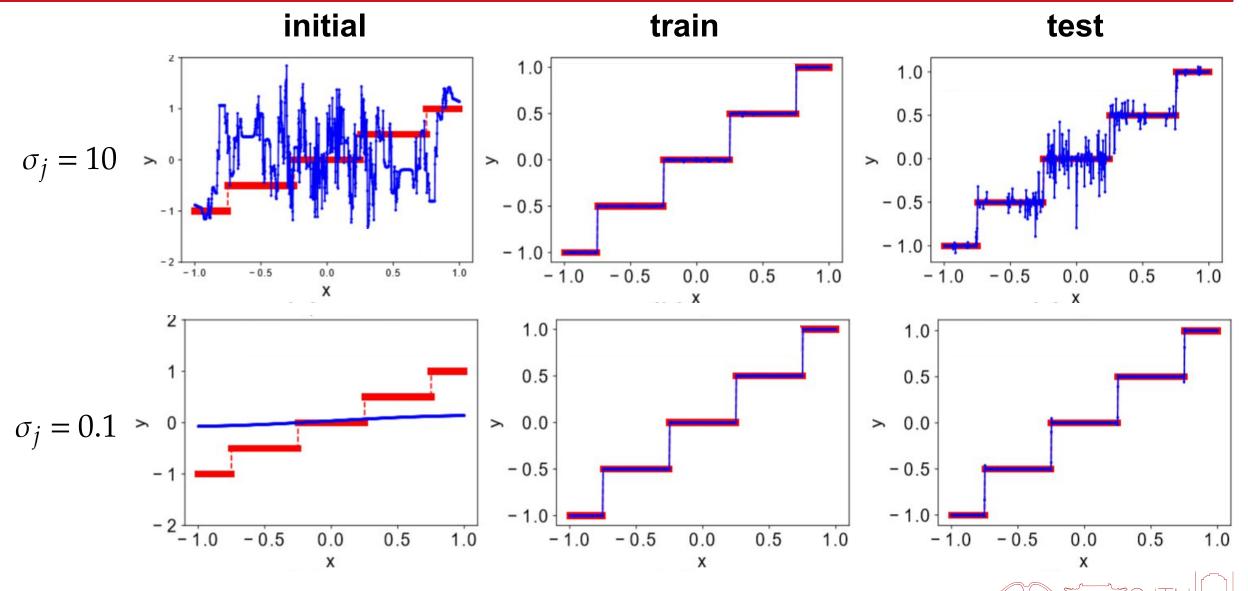
$$W^{[j]}(0), b^{[j]}(0) \sim \mathcal{N}(0, \sigma_j^2)$$

$$\left[\sigma_{j}\right]_{j=1,\cdots,H} \xrightarrow{\mathbf{2}} h_{\boldsymbol{\theta}(\infty)}(x)$$

initialization

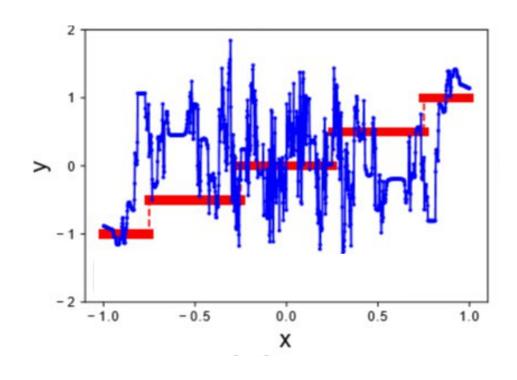
generalization

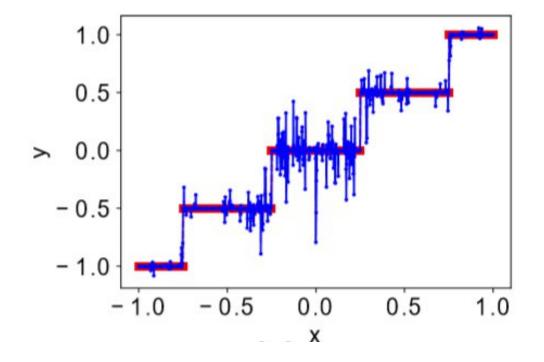
DNN can easily overfit with bad initialization



ZQJ Xu, Y Zhang, Y Xiao, *Training behavior of deep neural network in frequency domain*, ICONIP 2019.

Impact of $f(\cdot, \Theta(0))$





Setup in the linear (NTK) regime

NNs can be linearized around initialization

$$h(\boldsymbol{x},\boldsymbol{\theta}) \approx h(\boldsymbol{x},\boldsymbol{\theta}_0) + \nabla_{\boldsymbol{\theta}} h(\boldsymbol{x},\boldsymbol{\theta}_0) \cdot (\boldsymbol{\theta} - \boldsymbol{\theta}_0)$$

Loss

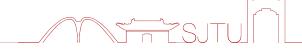
$$R_S(\boldsymbol{\theta}) = \operatorname{dist}(\boldsymbol{h}(\boldsymbol{X}, \boldsymbol{\theta}), \boldsymbol{Y})$$

Neural tangent kernel (NTK)

$$k(\cdot,\cdot) = \nabla_{\boldsymbol{\theta}} h(\cdot,\boldsymbol{\theta}_0)^{\mathsf{T}} \nabla_{\boldsymbol{\theta}} h(\cdot,\boldsymbol{\theta}_0)$$

Kernel gradient flow

$$\partial_t h(\boldsymbol{x},t) = -\boldsymbol{k}(\boldsymbol{x},\boldsymbol{X}) \nabla_{\boldsymbol{h}(\boldsymbol{X},t)} \operatorname{dist} (\boldsymbol{h}(\boldsymbol{X},t),\boldsymbol{Y})$$



Equivalent optimization problems

Theorem 5 Let $\theta(t)$ be the solution of gradient flow dynamics

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{\theta}(t) = -\nabla_{\boldsymbol{\theta}}\boldsymbol{h}(\boldsymbol{X}, \boldsymbol{\theta}_0) \nabla_{\boldsymbol{h}(\boldsymbol{X}, \boldsymbol{\theta}(t))} \mathrm{dist}\left(\boldsymbol{h}(\boldsymbol{X}, \boldsymbol{\theta}(t)), \boldsymbol{Y}\right)$$
(8)

with initial value $\theta(0) = \theta_0$, where $\nabla_{\theta} h(X, \theta_0)$ is a full rank (rank n) matrix of size $m \times n$ with m > n. Suppose that the limit $\theta(\infty) = \lim_{t \to \infty} \theta(t)$ exists. Then $\theta(\infty)$ solves the constrained optimization problem

$$\min_{\boldsymbol{\theta}} \|\boldsymbol{\theta} - \boldsymbol{\theta}_0\|_2, \ s.t., \ \boldsymbol{h}(\boldsymbol{X}, \boldsymbol{\theta}) = \boldsymbol{Y}. \tag{9}$$

Theorem 6 Let θ be the solution of problem (9), then $h(x, \theta)$ uniquely solves the optimization problem

$$\min_{h-h_{\text{ini}}\in H_k(\Omega)} ||h-h_{\text{ini}}||_k \quad \text{s.t.} \quad \boldsymbol{h}(\boldsymbol{X}) = \boldsymbol{Y}, \tag{12}$$

In a general class, e.g., any L^p distance, choice of loss has no impact.

In practice, different loss can be considered to accelerate convergence.

Theorem 2 For a fixed kernel function $k \in C(\Omega \times \Omega)$, and training set $\{X; Y\}$, for any initial function $h_{\text{ini}} \in C(\Omega)$, $h_k(\cdot; h_{\text{ini}}, X, Y)$ can be decomposed as

$$h_k(\cdot; h_{\text{ini}}, \boldsymbol{X}, \boldsymbol{Y}) = h_k(\cdot; 0, \boldsymbol{X}, \boldsymbol{Y}) + h_{\text{ini}} - h_k(\cdot; 0, \boldsymbol{X}, h_{\text{ini}}(\boldsymbol{X})).$$
(6)

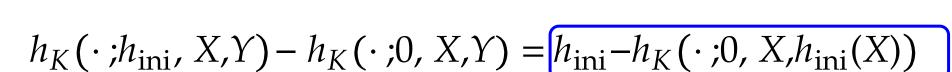
unbiased fit bias from $h_{\rm ini}$

Theorem 3 For a target function $f \in C(\Omega)$, if h_{ini} is generated from an unbiased distribution of random functions μ such that $\mathbb{E}_{h_{\text{ini}} \sim \mu} h_{\text{ini}} = 0$, then the generalization error of $h_k(\cdot; h_{\text{ini}}, \boldsymbol{X}, f(\boldsymbol{X}))$ can be decomposed as follows

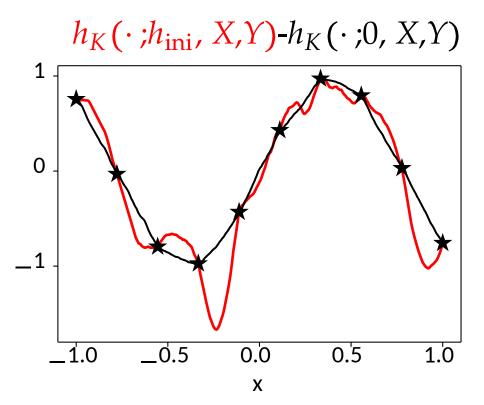
$$\mathbb{E}_{h_{\text{ini}} \sim \mu} R_S \left(h_k(\cdot; h_{\text{ini}}, \boldsymbol{X}, f(\boldsymbol{X})), f \right) = R_S \left(h_k(\cdot; 0, \boldsymbol{X}, f(\boldsymbol{X})), f \right) + \mathbb{E}_{h_{\text{ini}} \sim \mu} R_S \left(h_k(\cdot; 0, \boldsymbol{X}, h_{\text{ini}}(\boldsymbol{X})), h_{\text{ini}} \right),$$

where
$$R_S(h_k(\cdot; h_{\text{ini}}, \mathbf{X}, f(\mathbf{X})), f) = ||h_k(\cdot; h_{\text{ini}}, \mathbf{X}, f(\mathbf{X})) - f||_{L^2(\Omega)}^2$$
.

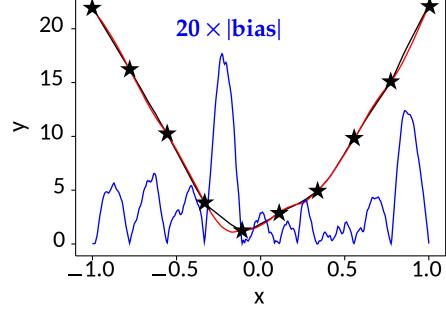
additional generalization error



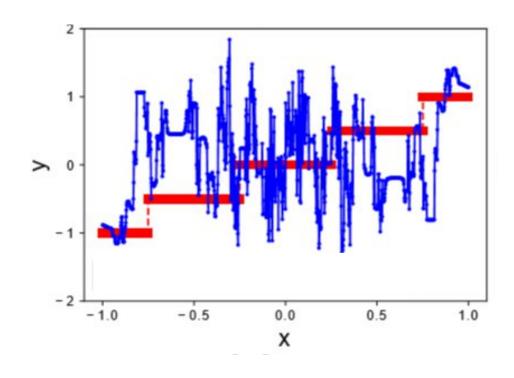
bias: high freq of h_{ini}

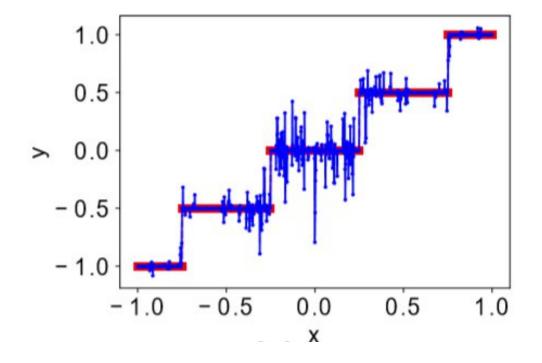


$$h_{\text{ini}}-h_K(\cdot;0,X,h_{\text{ini}}(X))$$

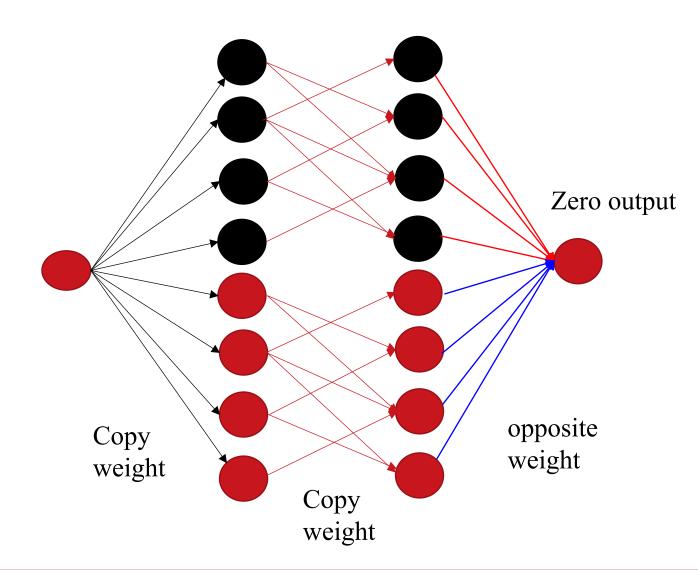


Revisit previous experiments





AntiSymmetrical Initialization (ASI) trick



Original DNN

$$h(x,\theta)$$
 with $\theta(0) = \theta_0$

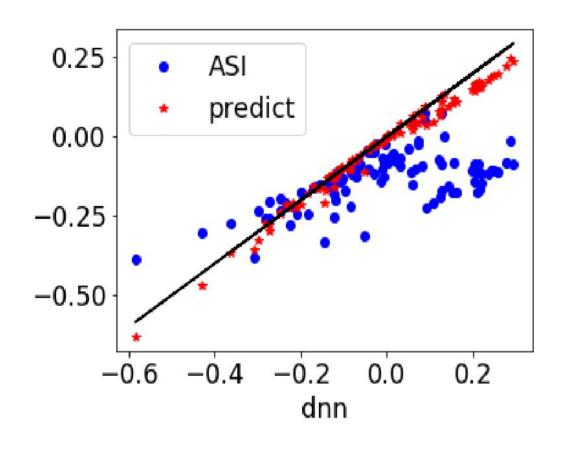
After ASI

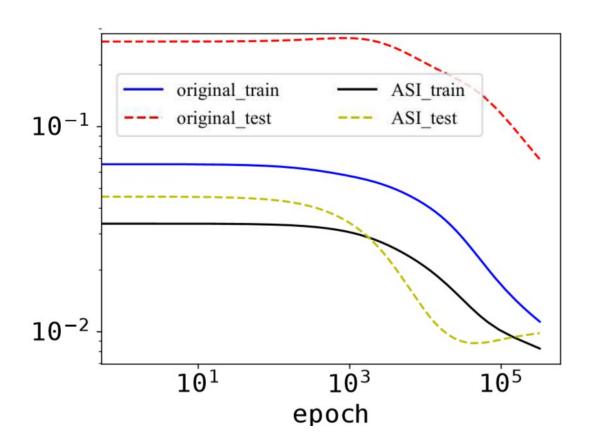
$$h_{\text{ASI}} = \frac{\sqrt{2}}{2}h(x,\theta) - \frac{\sqrt{2}}{2}h(x,\theta')$$
$$\theta'(0) = \theta(0) = \theta_0$$

Properties

- 1. $h_{ASI} = 0$ at initialization
- 2. $k_{\text{ASI}}(\cdot, \cdot) = k(\cdot, \cdot)$

Experiments--Boston house price dataset





Experiments—MNIST dataset

