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Deep learning is no longer a black-box



Illustration of Condensation

𝑓 𝑥 =
（𝑎1 + 𝑎2)𝜎(𝒘𝑇1𝒙) +
（𝑎3 + 𝑎4 + 𝑎5)𝜎(𝒘𝑇3𝒙)
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Initial：random Training：condense Effect：equiv to small net

Tao Luo, Zhi-Qin John Xu, Zheng Ma, Yaoyu Zhang,
Phase diagram for two-layer ReLU neural networks at infinite-width limit, Journal of Machine Learning Research (2021)



𝑓𝜃 𝑥 =
𝑚

𝑗=1
𝑎𝑗 relu (𝑤𝑗𝑥 + 𝑏𝑗)

Small initialization: 𝑎𝑗(0),𝑤𝑗(0),𝑏𝑗(0)~𝑁(0,𝜎2) with small 𝜎

relu(𝑧) = max (0,𝑧)

𝑤

𝑏

𝐴𝑗 = 𝑎𝑗 𝑤2𝑗 + 𝑏2𝑗

1d example: condensation with small initialization



Evolution trajectory: change significantly



Evolution trajectory: change significantly



100% training and 97.62% test accuracy

Cosine similarity:

Condensation in CNN on MNIST



Condensation in transformer



Regime of Condensation
1.Tao Luo, Zhi-Qin John Xu, Zheng Ma, Yaoyu Zhang, “Phase Diagram for Two-layer ReLU Neural Networks at
Infinite-Width Limit,” Journal of Machine Learning Research (JMLR) 22(71):1−47, (2021).

2.Hanxu Zhou, Qixuan Zhou, Zhenyuan Jin, Tao Luo, Yaoyu Zhang, Zhi-Qin John Xu, “Empirical Phase
Diagram for Three-layer Neural Networks with Infinite Width,” NeurIPS 2022.



• Data: 𝒙𝑖∈ℝ𝑑,𝑦𝑖∈ℝ
𝑛
𝑖=1

• Two layer ReLU network

• Loss

• Gradient flow dynamics

𝑥 = 𝑥𝑇,1 𝑇

𝑤𝑘 = 𝑤𝑇𝑘 ,𝑏𝑘
𝑇

Overparameterized setup:
𝑀 =𝑚(𝑑 + 1) ≫ 𝑛,
Properties:
1. Global minima is𝑀−𝑛 dimensional

(proved by Yaim Cooper 2018)
2. Often non-overfitting
3. Evolution of 𝜃 𝑡 and 𝜃 ∞

depend on 𝛼,𝛽1,𝛽2

Goal:
Identify dynamical regimes of training
over 𝛼,𝛽1,𝛽2 at infinite-width limit.



Initialization methods with their scaling parameters



Normalization and scaling parameters

• Two layer ReLU network

• Normalized gradient flow

• Scaling parameters and infinite-width limit

𝑥 = 𝑥𝑇,1 𝑇

𝑤𝑘 = 𝑤𝑇𝑘 ,𝑏𝑘
𝑇



• Phase diagram for matter
distinctive states of matter <-> environment
(phase transition happens at infinite size
limit)
solid, liquid, gas <-> pressure, temperature

• Phase diagram for two-layer ReLU NN
training dynamics <-> initialization (𝑚 →∞)
? <->?

Identification of coordinates of phase diagram (in analogy to pressure,
temperature)
1. Effectively independent
2. Dynamical similarity
3. Differentiation capability

Phase diagram



Phase Diagram



Typical cases across the phase diagram
Linear regime critical regime condensed regime

𝛾′ = 0



Regime identification

• Linear regime (with ASI)

• Relative distance

As 𝑚 →∞,
• Linear regime:

• Condensed regime:

• Critical regime:



Scaling analysis

• Two layer ReLU network at infinite-width limit

• “capability” of NN:

• output-layer dominant:

𝑥 = 𝑥𝑇,1 𝑇

𝑤𝑘 = 𝑤𝑇𝑘 ,𝑏𝑘
𝑇



Regime identification through experiments

𝛾′ = 0



Regime identification through experiments

Synthetic data MNIST data



Blue: 𝑚 = 103
red: 𝑚 = 104
Yellow: 𝑚 = 106

Feature distribution at the condensed regime-synthetic



Blue: 𝑚 = 103
red: 𝑚 = 104
Yellow: 𝑚 = 106

Feature distribution at the condensed regime-MNIST



Regime separation -- theorems



Phase Diagram



Typical cases across the phase diagram
Linear regime critical regime condensed

regime

𝛾′ = 0

Tao Luo, Zhi-Qin John Xu, Zheng Ma, Yaoyu Zhang,
Phase diagram for two-layer ReLU neural networks at infinite-width limit, Journal of Machine Learning Research (2021)



Hanxu Zhou, Qixuan Zhou, Zhenyuan Jin, Tao Luo, Yaoyu Zhang, Zhi-Qin John Xu,
Empirical Phase Diagram for Three-layer Neural Networks with Infinite Width, NeurIPS 2022

Phase diagram in three-layer ReLU NN



Condensation facilitates reasoning

Zhongwang Zhang, Pengxiao Lin, Zhiwei Wang, Yaoyu Zhang, Zhi-Qin John Xu, “Initialization is Critical to Whether Transformers Fit Composite Functions by
Inference or Memorizing,” NeurIPS 2024.



Composite Anchor function



Symmetric or inferred solutions?



Initialization~𝑁 0, 1
𝑑𝛾𝑖𝑛

 

Large ini Small ini

Phase diagram of symmetric solution



Initialization~𝑁 0, 1
𝑑𝛾𝑖𝑛

 

Large ini Small ini

Phase diagram of inferential solution



Cosine Similarity b/w
Columns of𝑾𝑸(𝟏)
Input weight of Q neurons

𝑿(𝟏)
𝑾𝑸(𝟏)

output: 𝑸(𝟏)

Small ini: clear condensation Large ini: no condensation

Condensation of𝑾𝑸(𝟏) by column



Zhongwang Zhang, Pengxiao Lin, Zhiwei Wang, Yaoyu Zhang, Zhi-Qin John Xu*, Initialization is Critical to Whether
Transformers Fit Composite Functions by Inference or Memorizing, arxiv 2401.08309

Not only one pair
But ten pairs in training
11;12,21; 13, 31; 14, 41; 23, 32;… Need to learn four functions

Complexity of solutions



Structure of embedding space



Symmetric solution



Inferential solution



Small initial Condense Low
complexity as
possible

Only learn
four anchor

Large initial Vey slight
condense

Large
complexity

Easily fit ten
sym. maps

Generalize
on inference
Generalize
on sym. map

Very
Large initial

No
condense

Very large
complexity Easily all

fit maps
No

Generalize

Mechanisms underlying initialization effect



See more works on my personal website: https://yaoyuzhang1.github.io/

Condensation



Problems
How can condensation be facilitated in a neural network?
Is it valid to compare the performance of wide and narrow networks
when the initialization variance is fixed?
What initialization strategy can be used for a three-layer network to
induce condensation in the first hidden layer but not in the second?
Where condensation can happen within a transformer?



Thanks！


