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Deep learning is no longer a black-box



Phenomenon as a key family of facts to uncover
Frequency principle/spectral bias
Condensation
Double descent
Edge of stability
Lottery ticket
Neural collapse
Grokking
……



Deep learning loss landscape



Role of loss landscape (conventional ML)

parameter space

global-min

#𝐩𝐚𝐫𝐚𝐦 ≤ #𝐝𝐚𝐭𝐚



Role of loss landscape (deep learning)

#𝐩𝐚𝐫𝐚𝐦 > #𝐝𝐚𝐭𝐚



DNN loss landscape is complex



Which picture captures NN loss landscape？

A B✘✔



Illustration of different global-minima



Loss landscape structure
underlying condensation

1.Yaoyu Zhang, Zhongwang Zhang, Tao Luo, Zhi-Qin John Xu, “Embedding Principle of Loss Landscape of
Deep Neural Networks,” NeurIPS 2021 spotlight.

2.Yaoyu Zhang, Yuqing Li, Zhongwang Zhang, Tao Luo, Zhi-Qin John Xu, “Embedding Principle: a hierarchical
structure of loss landscape of deep neural networks,” Journal of Machine Learning, 1(1), pp. 60-113, 2022.

3.Hanxu Zhou, Qixuan Zhou, Tao Luo, Yaoyu Zhang, Zhi-Qin John Xu, “Towards Understanding the
Condensation of Neural Networks at Initial Training,” NeurIPS 2022.

4.Tao Luo, Leyang Zhang, Yaoyu Zhang, “Structure and Gradient Dynamics Near Global Minima of Two-layer
Neural Networks,” arXiv:2309.00508 (2023).



Typical training behavior with strong condensation

Width-500 tanh-NN (~1500 parameters)



Initial stage

Intermediate stage

final stage

Trajectory of training loss



Initial condensation



Initial stage

Hanxu Zhou, Qixuan Zhou, Tao Luo, Yaoyu Zhang, Zhi-Qin John Xu,
Towards Understanding the Condensation of Neural Networks at Initial Training, NeurIPS 2022.

Initial condensation



𝒘𝑗̇ =
𝑚

𝑖=1
𝑦𝑖−𝑓𝜽 𝑥𝑖 𝑎𝑗𝜎′ 𝒘T

𝑗 𝒙𝑖 𝒙𝑖

𝒘𝑗̇ ≈ 𝑎𝑗
𝑚

𝑖=1
𝑦𝑖𝜎′ 𝒘T

𝑗 𝒙𝑖 𝒙𝑖

When 𝜽 ≈ 𝟎, then 𝑓𝜽 ⋅ ≈ 0(⋅) ：

i. No coupling between 𝒘𝒋 and 𝒘𝒋′!
ii. 𝟐 limiting directions: ±∑𝑚

𝑖=1 𝑦 𝑖𝒙 𝑖.

If 𝜎′ 0 ≠ 0 (e.g. tanh, swish, gelu):

𝒘𝑗̇ ≈ 𝑎𝑗𝜎′ 0
𝑚

𝑖=1
𝑦𝑖𝒙𝑖

Loss landscape around 0 and Initial condensation



Intermediate condensation
and embedding principle



Exercise
Target：𝑓∗ 𝑥 = tanh 𝑥−7 + tanh 𝑥 + tanh 𝑥 + 7
Data: 𝑆 = 𝑥𝑖,𝑓∗(𝑥𝑖)  50

𝑖=1
Model：𝑓𝜃 𝑥 =∑𝑚

𝑗=1 𝑎 𝑗 tanh(𝑤 𝑗𝑥 + 𝑏 𝑗) (𝜃 = 𝑎𝑗,𝑤𝑗,𝑏𝑗
𝑚
𝑗=1
)

Loss: 𝑅𝑆 𝜃 = 1
50
∑50

𝑖=1 𝑓𝜃 𝑥 𝑖 −𝑓∗(𝑥 𝑖) 2

m=3，1. Dimension of 𝑅𝑆 𝜃 ？
2. Existance of zero loss global minima？
3. Is 𝑅𝑆 𝜃 convex？
4. Are there non-global critical points? How many？5. How many critical functions ℱ𝑐 ≔ 𝑓𝜃 ⋅ 𝛻𝑅𝑆 𝜃 = 0 ？

What are they？



Answer
Target：𝑓∗ 𝑥 = tanh 𝑥−7 + tanh 𝑥 + tanh 𝑥 + 7
Data: 𝑆 = 𝑥𝑖,𝑓∗(𝑥𝑖)  50

𝑖=1
Model：𝑓𝜃 𝑥 =∑𝑚

𝑗=1 𝑎 𝑗 tanh(𝑤 𝑗𝑥 + 𝑏 𝑗) (𝜃 = 𝑎𝑗,𝑤𝑗,𝑏𝑗
𝑚
𝑗=1
)

Loss: 𝑅𝑆 𝜃 = 1
50
∑50

𝑖=1 𝑓𝜃 𝑥 𝑖 −𝑓∗(𝑥 𝑖) 2

m=3，1. Dimension of 𝑅𝑆 𝜃 ？9
2. Existance of zero loss global minima？exist
3. Is 𝑅𝑆 𝜃 convex？no
4. Are there non-global critical points? How many？infinite5. How many critical functions ℱ𝑐 ≔ 𝑓𝜃 ⋅ 𝛻𝑅𝑆 𝜃 = 0 ？

What are they？≥ 5



Intermediate stage

Zhang, Zhang, Luo, Xu, NeurIPS 2021 spotlight.Zhang, Li, Zhang, Luo, Xu, Journal of Machine Learning 2022.

Intermediate condensation



Training similarity of NNs with different widths



Embedding Principle in width

Theorem
Critical functions of narrow NNs are critical functions
of any wider NNs, i.e.,

ℱ𝐜
𝐧𝐚𝐫𝐫 ⊂ℱ𝐜

𝐰𝐢𝐝𝐞,
where ℱc ≔ {𝑓𝜃(⋅)|∇𝑅𝑆 𝜃 = 0}.

Implication
“simple” critical points always exist!

[1] Zhang, Zhang, Luo, Xu. Embedding Principle of Loss Landscape of Deep Neural Networks. NeurIPS 2021 Spotlight.
[2] Zhang, Li, Zhang, Luo, Xu. Embedding Principle: a hierarchical structure of loss landscape of deep neural networks. Journal of Machine Learning, 2022.

Embedding Principle
The loss landscape of any network ``contains''

all critical points of all narrower networks.



hierarchical structure of DNN loss landscape

Simple → Complex
Simple → Complex



Exercise

Objective：𝑓∗ 𝑥 = tanh 𝑥−7 + tanh 𝑥 + tanh 𝑥 + 7
Data：𝑆 = 𝑥𝑖,𝑓∗(𝑥𝑖)  50

𝑖=1
Model：𝑓𝜃 𝑥 =∑3

𝑗=1 𝑎 𝑗 tanh(𝑤 𝑗𝑥 + 𝑏 𝑗) (𝜃 = 𝑎𝑗,𝑤𝑗,𝑏𝑗
3
𝑗=1
)

Loss landscape：𝑅𝑆 𝜃 = 1
50
∑50

𝑖=1 𝑓𝜃 𝑥 𝑖 −𝑓∗(𝑥 𝑖) 2

Critical functions ℱ𝑐 ≔ 𝑓𝜃 ⋅ 𝛻𝑅𝑆 𝜃 = 0 ?



Example: analysis of hierarchical structure

500 tanh neuron



Key to the proof of Embedding Principle



One-step splitting embedding



Splitting embedding is critical embedding



Condense

Embedding

Initial: Neurons
different

After training:
Clustered

Effective small
net

Embedding as “inverse” of condensation



Implication of Embedding Principle



Implication—optimization

local-min of narrow NN→ saddles of wide NN



Optimization benefit of wide NNs

Transition to strict saddle points is Irreversible.



Training and generalization

Observation
Nonlinear training of DNNs tends to learn simple
critical functions.



Implication—pruning

“simple” critical points has huge pruning potential



Dimension of critical submanifolds

“Simple” critical functions possess high
dimensional critical submanifolds.



Loss landscape analysis of width-3 tanh-NN

𝑅𝑆 𝜃 = 1
50∑

50
𝑖=1 𝑓𝜃 𝑥 𝑖 −𝑦 𝑖 2 ,  𝑓𝜃 𝑥 =∑3

𝑗=1 𝑎 𝑗tanh (𝑤 𝑗𝑥 + 𝑏 𝑗)



Hierarchical structure for two-layer NN

499-D 498-D 497-D



Final condensation

Tao Luo, Leyang Zhang, Yaoyu Zhang,Structure and Gradient Dynamics Near Global Minima of Two-layer Neural Networks, arXiv:2309.00508 (2023)



Final condensation

final stage

Tao Luo, Leyang Zhang, Yaoyu Zhang,Structure and Gradient Dynamics Near Global Minima of Two-layer Neural Networks, arXiv:2309.00508 (2023)



Geometry of global-min: simpler 𝒇∗, higher-dim 𝑸∗

• Model： 𝐹 𝜃)(𝑥 = 𝑎1𝜎 𝑤𝑇
1𝑥 + 𝑎2𝜎 𝑤𝑇

2𝑥 ,  𝑥∈ℝ2,𝜃∈ℝ6

• Target: 𝑓∗ = 𝑎𝜎 𝑤T𝑥
• Target Set  𝑄∗ = 𝐹−1(𝑓∗) generally consists of three “branches” (sets)

(a) 𝑄1 = 𝑎𝑘,𝑤𝑘
2
𝑘=1 :𝑤1 = 𝑤2 = 𝑤,𝑎1 + 𝑎2 = 𝑎 .

(b) 𝑄2 = 𝑎𝑘,𝑤𝑘
2
𝑘=1 :𝑤1 = 𝑤,𝑎1 = 𝑎,𝑎2 = 0 .

(c) 𝑄3 = 𝑎𝑘,𝑤𝑘
2
𝑘=1 :𝑤2 = 𝑤,𝑎2 = 𝑎,𝑎1 = 0 .

Illustration of 𝑄1,𝑄2,𝑄3

𝐿−1𝑆 0As sample size 𝑛 increases, how
global min 𝑳−𝟏

𝑺 𝟎 shrinks to
𝑸∗?



𝐿−1𝑆 0
\Q∗ 𝑛 < 4 𝑛 = 4 𝑛 = 5

𝑛 = 6 𝑛 > 6

Geometry of global minima for final condensation



Gradient flows near 𝑸∗:
𝛾1 : sublinear rate;
𝛾2,𝛾3: linear rate.

Typical convergence rate for final condensation



Stability of target branches underlies final condensation



Zhiwei Bai, Tao Luo, Zhi-Qin John Xu, Yaoyu Zhang, “Embedding Principle in Depth for the Loss Landscape Analysis of DeepNeural Networks,” CSIAM Trans. Appl. Math., 5 (2024), pp. 350-389.

Embedding principle in depth



Phenomenon: training similarity in depth



Embedding Principle in depth

Zhiwei Bai, Tao Luo, Zhi-Qin John Xu, Yaoyu Zhang, “Embedding Principle in Depth for the Loss Landscape Analysis of DeepNeural Networks,” CSIAM Trans. Appl. Math., 5 (2024), pp. 350-389.



Key to the Proof



One-layer lifting



Embedding Principle in depth



See more works on my personal website: https://yaoyuzhang1.github.io/

Condensation



Problems
Why does small initialization lead to (initial) condensation in neural
networks?
How does the empirical risk landscape transform as the width of a
neural network increases?
What are the reasons why wider neural networks are often easier to
optimize than narrower ones?
Is it possible for neural networks to achieve zero generalization error
for a target function under overparameterization?



Thanks！


