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®Frequency principle/spectral bias
®Condensation

®Double descent

®Edge of stability
®Lottery ticket

®Neural collapse

®Grokking




Deep learning loss landscape

Rs(0) = 5 2oily ((f(xi, 0), yi)

Model: f(x;, 0)
Data: S = {(x;, ¥i}i_
Loss: /(-, )
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|OSS training alg
landscape
P #param < #data
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Role of loss landscape (deep learning)

#param > #data

loss training alg training
landscape trajectory

1 Parameter Space
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(a) Loss surface on FashionMNIST dataset (b) Loss surface on CIFAR10 dataset

|. Skorokhodov, M. Burtsev, 2019
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@) Which picture captures NN loss landscape? -

X
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lllustration of different global-minima
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Loss landscape structure
underlying condensation

1.Yaoyu Zhang, Zhongwang Zhang, Tao Luo, Zhi-Qin John Xu, “Embedding Principle of Loss Landscape of
Deep Neural Networks,” NeurlPS 2021 spotlight.

2.Yaoyu Zhang, Yuging Li, Zhongwang Zhang, Tao Luo, Zhi-Qin John Xu, “Embedding Principle: a hierarchical
structure of loss landscape of deep neural networks,” Journal of Machine Learning, 1(1), pp. 60-113, 2022.

3.Hanxu Zhou, Qixuan Zhou, Tao Luo, Yaoyu Zhang, Zhi-Qin John Xu, “Towards Understanding the
Condensation of Neural Networks at Initial Training,” NeurlPS 2022.

4.Tao Luo, Leyang Zhang, Yaoyu Zhang, “Structure and Gradient Dynamics Near Global Minima of Two-layer
Neural Networks,” arXiv:2309.00508 (2023).

/Y\%JTJﬁ o




10

Width-500 tanh-NN (~1500 parameters)
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Initial stage C_\

100.

loss

Training of width-500 tanh NN

10—1.
10—2.

10—3.

Intermediate stage

101
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epoch

final stage

—— width-500
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» training data
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Initial condensation )—
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Initial condensation

—— width-500
2| ==+ width-1

Training of width-500 tanh NN + training data

Initial stage C_\ -0
100, /_24

10—1 - & / ‘ | |
~10 0 10
1072 g
1073 —— width-500
2] ==+ width-3

101 — 1(')5 \ * training data

epoch > 01

loss

10

O

=10
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Hanxu Zhou, Qixuan Zhou, Tao Luo, Yaoyu Zhang, Zhi-Qin John Xu,
Towards Understanding the Condensation of Neural Networks at Initial Training, NeurlPS 2022.



Z (vi—fo (xz))a (w xz)x

When 0 = 0, then fg(-) = 0() :

m
.~ -’ [ oTx. ) x

i. No coupling between w; and w /!

J
ii. 2 limiting directions: £}, y;x;.

(a) tanh(z)

0 25 49
0 :
25 ﬁ .
49 -

(c) z° tanh(z)

(d) ReLU(z)
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Intermediate condensation
and embedding principle
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Exercise

Target: f*(x) = tanh(x-7) + tanh (x) + tanh (x + 7)
Data: S ={(x;,f*(x;) )},

Model : fg(x) :E].”il aj tanh(w]-x + b]-) (6 :[a]-,w]',b-]i.ﬂ )

J j=1

Loss: Rg(6) = %Z?Bl [fo(x)—f*(x))]?

LN =3

5.

-3,
Dimension of Rg(6)7

Existance of zero loss global minima®?

Is Rg(0) convex?

4. Are there non-global critical points? How many?
How many critical functions .7 :={fg(-)|VRs(6) =0} 7

What are they?
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Target: f*(x) = tanh(x-7) + tanh (x) + tanh (x + 7)
Data: S ={(xi,f*(xi) )}15:01
Model : f@ (X) :E]'nil a; tanh(wjx + b]) (6 :[a],w],b]]m )

j=1
Loss: Rg(6) = %Z?Bl [fo(x)—f*(x))]?

-3,
. Dimension of R¢(0)79

Existance of zero loss global minima?exist

Is Rg(6) convex?no

4. Are there non-global critical points? How many?infinite
5. How many critical functions .7° :={fg()|VRs(6) =0} ?
What are they?>5

W~ 3
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Intermediate condensation

Training of width-500 tanh NN

100 |

10—1.

loss
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Intermediate stage
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Embedding Principle in width

Embedding Principle
The loss landscape of any network ““contains”
all critical points of all narrower networks.

Theorem
Critical functions of narrow NNs are critical functions

of any wider NNs, i.e.,

¢ 4C
Fnarr © 7 iger

where F° == {f4()IVR (6) = O}.

Implication
“simple” critical points always exist!

F=rsJTull |
/ IN\T=TSJT -
[1] Zhang, Zhang, Luo, Xu. Embedding Principle of Loss Landscape of Deep Neural Networks. NeurlPS 2021 Spotlight.

[2] Zhang, Li, Zhang, Luo, Xu. Embedding Principle: a hierarchical structure of loss landscape of deep neural networks. Journal of Machine Learning, 2022.
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Exercise

Objective: f* (x) = tanh (x-7) + tanh (x) + tanh (x + 7)
Data: S ={(xi,f*(xi) )}1521

3
Model : fg(x) =7, a;tanh (wx + b)) (0 =[ajwibl )

Loss landscape : Rs(6) :%2?21 [fo(x)—f*(x;)|?

Critical functions .7 :={fy()|VRs(0) =0} ?
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e d

500 tanh neuron

//// N /’ ) A B , W
\\\\ 1 TE/ 7:5/ 500 o _—

=10 0 10
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Key to the proof of Embedding Principle

Key: discovering critical embedding

Discover embedding 7 : RMmar — RMwiee guch that for Oyiqe
(1) output preserving: fo,, = fo, .. ;

(il) criticality preserving: if 8, is a critical point, then 6,4, is also a

critical point.

= T( Onarr)

critical embedding exists = Embedding Principle
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1 copy ' ’

One-step embedding 7.
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Splitting embedding is critical embedding

Proposition (output and representation preserving)

For any point 0,5+ 0f 2 DNN, a point 6,4e 0f 2 wider DNN obtained from
Onarr by one-step embedding satisfies
fo...(X) = Fy ... (X) for any x.

Theorem (criticality preserving)

For any critical point 6n4 of @ DNN, a point 6\,4c 0f a wider DNN
obtained from 6,4y by one-step embedding is a critical point.

Remark: Obviously, multi-step embedding, i.e., composition of
one-step embedding, is also critical embedding.
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Embedding as “inverse” of condensation

Initial: Neurons After training: Effective small
differe Cluster net

Condense

R

Embedding O
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Implication of Embedding Principle )—
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abs(eig) abs(eig)

abs(eig)

[ ] [ ]
e negative
e positive m=2
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index

(a) synthetic data
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&) Optimization benefit of wide NNs

s
4
0 ToNG S

%,
&
14,

Transition to strict saddle points is Irreversible.

Theorem

Given an NN({m}i_,) and any of its parameters 6 € RM, for any
critical embedding T : RM — RM' to any wider NN({m/}L_,), the
number of positive, zero, negative eigenvalues of Hs(7(0)) is no less
than the counterparts of Hs(0).
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Training and generalization

Observation
Nonlinear training of DNNs tends to learn simple
critical functions.

™ )

2 F g/ 500
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loss

10—1.

10-2_

10—3_

training loss
e selected point

0 2000 4000 6000

epoch

(a) mnitial loss
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(b) orientation similarity
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Dimension of critical submanifolds

Theorem (informal)

(Under mild assumption) Any critical point 8¢ of a DNN can be

embedded to K-dimensional critical affine subspaces of a K-neuron

wider DNN.

1-neuron 2-neuron
wider NN wider NN

Y 2
1,51 ” [, .
® > 1 > 1 ————
a;

“Simple” critical functions possess high
dimensional critical submanifolds.
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Loss landscape analysis of width-3 tanh-NN Pl

Rs(0) =320 (fo(x)-v)?, fo(x) =§;]3:1 ajtanh (wix +b;)

/// ~N | SR )
functions of / . / f
critical points ~ /

& y S 7 7,

critical points/
submanifolds °
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Final condensation )—
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Tao Luo, Leyang Zhang, Yaoyu Zhang,
Structure and Gradient Dynamics Near Global Minima of Two-layer Neural Networks, arXiv:2309.00508 (2023)



Final condensation

—— width-500
2| ==+ width-1

Training of width-500 tanh NN + training data

> 0
10°- / ,
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Tao Luo, Leyang Zhang, Yaoyu Zhang,
Structure and Gradient Dynamics Near Global Minima of Two-layer Neural Networks, arXiv:2309.00508 (2023)



» Model: F(6)(x) =ay0(wlx)+ a0 (wlx), xeR?,6€R®

» Target: f* =d0 (W' x)
- Target Set Q* = F~1(f*) generally consists of three “branches” (sets)
(@) Q1 = {(a,w)i_, w1 = wy =W,aq +ap =a}. ‘,«Q’:N""\/' _______ S~

(b) Q2 ={(ar,wpi_, w1 =W,a; =a,a, =0}, \
(c) Qs ={(ar,wi_, :wr =W,a, =ad,a1 =0}, \
\
\

As sample size n increases, how
N
N

global min L (0) shrinks to .
Ilustration of Q!,0Q%,Q3

Q*?
7 T \T=SJTU

N
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e d

Q> Qs
T

Gradient flows near Q~:
Y1 : sublinear rate;
V2,Y3: linear rate.
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Stability of target branches underlies final condensation ..

Theorem 5.4 (recovery stability). Given mg < r < m, partition P and permutation © and separating inputs
{zi}izy. Then no point in Q'p . is recovery stable when n <r+ (r —1)d (I is the deficient number of P), and

almost all points in Q's .. are recovery stable when n > r + (m + mo — r)d. Moreover, all points in Q* are
?
recovery stable when n > (d + 1)m, namely, Q* is recovery stable.

Sample size/Branches | Q™° | ... | Q" | ... | Q™
> m + mod v
>r+(m+mo—r)d v ||V
> mg + md v e |V e |V
> (d+1)m e

v "1 any point in Q* is recovery stable
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Embedding principle in depth )—
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Zhiwei Bai, Tao Luo, Zhi-Qin John Xu, Yaoyu Zhang, “Embedding Principle in Depth for the Loss Landscape Analysis of Deep
Neural Networks,” CSIAM Trans. Appl. Math., 5 (2024), pp. 350-389.



1.0 1
0.35 A - Three-hidden-layer
- Four-hidden-layer
0.30 1 - Five-hidden-layer 0.8 1
0.25 -
>
v 0.6
¢ 0.20 4 - \
8 stagnate at the same loss 2 stagnate at the same accuracy
o
0.15 - / < 0.4 -
0.101 = Three-hidden-layer
0.2 :
0.05 A - Four-hidden-layer
~ Five-hidden-layer
000 T T T T T 0.0 T T T T T
0 25000 50000 75000 100000 0 25000 50000 75000 100000
Epoch Epoch

(a) Loss (Iris) (b) Accuracy (Iris)
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Embedding Principle in depth

A" Embedding principle in depth

the loss landscape of any network “contains” all critical points of all

shallower networks.

/\”(\Ji”ﬁ%ﬂﬁ o

Zhiwei Bai, Tao Luo, Zhi-Qin John Xu, Yaoyu Zhang, “Embedding Principle in Depth for the Loss Landscape Analysis of Deep
Neural Networks,” CSIAM Trans. Appl. Math., 5 (2024), pp. 350-389.




Key to the Proof

AR Goal: discover an embedding operator

Discover a mapping T : RMaa _y RMaer  gych that for any
Odeep € T (Osha1), We have

(1) output preserving:

foue, () = fou.(x), VX € S,

(2) criticality preserving:
if Ogna) is a critical point, then O4cp is also a critical point.

VRS(Oshal) =0 — VRS(Bdeep) = 0.
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Assumption 1. Activation function o has at least non-constant linear piece, e.g.,

RelLU, Leaky RelLU, ELU, etc.

wlitt — Wl giag(ywldl

Layer:q + 1
Layer Linearization :Vx €S,

Layer:q + 1 . i
G’(W’[Q]fgl/] (:E) + b’[’])
, Il
Layer:q Ao (WI[(i]f‘l;,](ﬁc) i b/[fi]) +p
One —layer Lover:q
Lifting
Layer:q —1

1. Layer linearization condition

. (me Fl9 (@) + br[«.ﬂ) — Ao (W'[fﬂ () + b’[él) +p,Ve e S,

2. Output preserving condition

Wletll diag(A)b'1d 4 Wletll gy 4 p'latl] = plat+l],

—_—

{W'WJ diag( A\)W'ld = Wlo+1],
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Embedding Principle in depth

# Embedding principle in depth [Bai et al.]

Theorem 1 (embedding principle in depth). Given any NN ({ml}lL_O)

and data S, for any @', of any shallower NN’ ({m;}lL_,O) satisfying
VeRs (0).) = 0, there exists parameter 0. in the loss landscape of
NN ({ml}lL_O) satisfying the following conditions:

(i) Output Preserving: fg () = fo () for € Sy;

(i) Criticality Preserving: VgRs (0.) = O.
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Condensation

Il matrix facotrization

| implicit bias

[Il one neuron recovery
A4 Global dynamics

Condensation .
Il reasoning

A5 Language model
A1 Regime

[Il compositional
generalization

A2 loss landscape

I,Il embedding principle
V critical set

| phage diagram two-layer

IV embedding in depth

Il three-layer

/- VN\T=rsJTUll 1L

See more works on my personal website: https://yaoyuzhang1.github.io/



Problems

®Why does small initialization lead to (initial) condensation in neural
networks?

@®How does the empirical risk landscape transform as the width of a
neural network increases?

@®What are the reasons why wider neural networks are often easier to
optimize than narrower ones?

@ls it possible for neural networks to achieve zero generalization error
for a target function under overparameterization?
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