The role of Artificial Intelligence in the future of mathematics

Amaury Hayat
CERMICS - Ecole des Ponts Paristech

FAU MoD Lecture

Thursday January 11th, 2024

École des Ponts
ParisTech

Introduction

Social networks
(5) 0

Emails and apps

Platforms

Introduction

Introduction

Over the past year, we have heard a lot about the progress of AI, particularly in one field: AI for language.

ChatGPT

LLaMA |' mistral by 0 Meta ${ }^{\text {i }}$ AI_

Introduction

How did we get there?

Introduction

How did we get there?

- Al for language is not new: research started ~ 1950

Introduction

How did we get there?

- Al for language is not new: research started ~ 1950
- A turning point in the years 2010s with the neural networks (large progress in translation, etc.)

Introduction

How did we get there?

- Al for language is not new: research started ~ 1950
- A turning point in the years 2010s with the neural networks (large progress in translation, etc.)
- Another turning point in 2017: the Transformer.

A turning point in 2017: the Transformer

```
Attention is all you need
A Vaswani, N Shazeer, N Parmar... - Advances in neural ..., 2017 - proceedings.neurips.cc
... to attend to all positions in the decoder up to and including that position. We need to prevent
... We implement this inside of scaled dot-product attention by masking out (setting to -\infty) ...
$ Enregistrer \0 Citer Cité 91677 fois Autres articles Les 62 versions $)
```

- An attention mechanism, which allows it to focus on the right pieces of a sentence

Hope is a good thing, maybe the best of things and no good thing ever dies.

Introduction

2018 - GPT - an autoregressive transformer.

A: Hope is a good thing, maybe the best of things and no good thing ever dies.

Outline of the Lecture

1. Al today in mathematics

2. Can Al prove theorems?

Outline of the Lecture

1. Al today in mathematics

2. Can Al prove theorems?

Solving maths problems with a computer

Solving maths problems with a computer

Conjecture (Euler, 1769)

If there exist integers $a_{1}, a_{2}, \ldots, a_{k}, b$, and n such that

$$
a_{1}^{n}+a_{2}^{n}+\ldots+a_{k}^{n}=b^{n},
$$

then $k \geq n$.

A problem open for almost 200 years

Solving maths problems with a computer

Lander and Parkin (1966)

Solving maths problems with a computer

Lander and Parkin (1966)

$$
27^{5}+84^{5}+110^{5}+133^{5}=144^{5}
$$

Solving maths problems with a computer

COUNTEREXAMPLE TO EULER'S CON JECTURE ON SUMS OF LIKE POWERS

BY L. J. LANDER AND T. R. PARKIN

Communicated by J. D. Swift, June 27, 1966
A direct search on the CDC 6600 yielded

$$
27^{5}+84^{5}+110^{5}+133^{5}=144^{5}
$$

as the smallest instance in which four fifth powers sum to a fifth power. This is a counterexample to a conjecture by Euler [1] that at least $n n$th powers are required to sum to an nth power, $n>2$.

Reference

1. L. E. Dickson, History of the theory of numbers, Vol. 2, Chelsea, New York, 1952, p. 648.

Solving maths problems with a computer

Proof of Keller's Conjecture (Brakensiek, Heule, Mackey, Narváez, 2019)

- A proof with many "simple cases" to check
- Many = far too many for a human

Solving maths problems with a computer

Proof of Keller's Conjecture (Brakensiek, Heule, Mackey, Narváez, 2019)

- A proof with many "simple cases" to check
- Many = far too many for a human
- Size of the proof:

Solving maths problems with a computer

Proof of Keller's Conjecture (Brakensiek, Heule, Mackey, Narváez, 2019)

- A proof with many "simple cases" to check
- Many = far too many for a human

■ Size of the proof: 200Gb ~ 10 Wikipedias

Conclusion: Computers have been used to prove theorems for a long time.

Conclusion: Computers have been used to prove theorems for a long time.

Can Al solve more complicated problems?

Problems where the difficulty is not just combinatorial?

Al in Mathematics Today

Three examples

■ Stability of dynamical systems

- Control theory
- Topology

Al in Mathematics Today

Three examples

■ Stability of dynamical systems

- Control theory
- Topology

Stability of Dynamical Systems

A system of differential equations

$$
\dot{x}(t)=f(x(t)),
$$

Stability of Dynamical Systems

A point in free fall.

$$
\begin{aligned}
\dot{y}(t) & =v(t) \\
\dot{v}(t) & =-g,
\end{aligned}
$$

Stability of Dynamical Systems

The evolution of a chemical reaction

$$
\begin{aligned}
& \dot{x}=-\alpha x(t)+(1-x(t)), \\
& \dot{y}=\alpha x(t)-y(t),
\end{aligned}
$$

Stability of Dynamical Systems

The Solow model in economics

$$
\begin{aligned}
\dot{K}(t) & =s F(K(t), a L(t))-\delta K v(t) \\
\dot{L}(t) & =n L(t),
\end{aligned}
$$

A system of differential equations

$$
\dot{x}(t)=f(x(t))
$$

A system of differential equations

$$
\dot{x}(t)=f(x(t))
$$

where $x(t) \in \mathbb{R}^{n}, f \in C^{1}\left(\mathbb{R}^{n}\right)$ and $f(0)=0$.

A system of differential equations

$$
\dot{x}(t)=f(x(t))
$$

where $x(t) \in \mathbb{R}^{n}, f \in C^{1}\left(\mathbb{R}^{n}\right)$ and $f(0)=0$.

Question (System Stability)

Is it true that for every $\varepsilon>0$, there exists $\delta>0$ such that if the initial condition satisfies $\|x(0)\| \leq \delta$ then the solution $x(t)$ exists for all $t \in[0,+\infty)$ and

$$
\|x(t)\| \leq \varepsilon, \forall t \in[0,+\infty)
$$

A system of differential equations

$$
\begin{gathered}
\dot{x}(t)=f(x(t)) \\
\text { where } x(t) \in \mathbb{R}^{n}, f \in C^{1}\left(\mathbb{R}^{n}\right) \text { and } f(0)=0 .
\end{gathered}
$$

Question (System Stability)

Is it true that for every $\varepsilon>0$, there exists $\delta>0$ such that if the initial condition satisfies $\|x(0)\| \leq \delta$ then the solution $x(t)$ exists for all $t \in[0,+\infty)$ and

$$
\|x(t)\| \leq \varepsilon, \forall t \in[0,+\infty)
$$

- Are all solutions bounded if the initial condition is sufficiently small?

A system of differential equations

$$
\dot{x}(t)=f(x(t))
$$

where $x(t) \in \mathbb{R}^{n}, f \in C^{1}\left(\mathbb{R}^{n}\right)$ and $f(0)=0$.

Question (System Stability)

Is it true that for every $\varepsilon>0$, there exists $\delta>0$ such that if the initial condition satisfies $\|x(0)\| \leq \delta$ then the solution $x(t)$ exists for all $t \in[0,+\infty)$ and

$$
\|x(t)\| \leq \varepsilon, \forall t \in[0,+\infty)
$$

- Are all solutions bounded if the initial condition is sufficiently small?

Stability of Dynamical Systems

A problem that has interested mathematicians for over a hundred years.

Stability of Dynamical Systems

A significant advancement: Lyapunov functions

Theorem

If there exists a function $V \in C^{1}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ such that for all $x \in \mathbb{R}^{n}$

$$
V(x)>V(0), \quad \text { and } \quad \nabla V(x) \cdot f(x) \leq 0,
$$

and

$$
\lim _{\|x\| \rightarrow+\infty} V(x)=+\infty,
$$

then the system is stable.

A. Lyapunov (1857-1918)

Stability of Dynamical Systems

A significant advancement: Lyapunov functions

Theorem

If there exists a function $V \in C^{1}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ such that for all $x \in \mathbb{R}^{n}$

$$
V(x)>V(0), \quad \text { and } \quad \nabla V(x) \cdot f(x) \leq 0
$$

and

$$
\lim _{\|x\| \rightarrow+\infty} V(x)=+\infty,
$$

then the system is stable.

A. Lyapunov (1857-1918)

Nothing tells us how to find such a function V...

Stability of Dynamical Systems

Nothing tells us how to find such a function V...

And it's not a simple problem.

Stability of Dynamical Systems

Nothing tells us how to find such a function V...
And it's not a simple problem.

$$
\dot{x}(t)=\left(\begin{array}{c}
-6 x_{1}^{4}(t) x_{2}^{5}(t)-3 x_{1}^{7}(t) x_{3}^{2}(t) \\
3 x_{1}^{9}(t)-6 x_{1}^{2}(t) x_{2}^{5}(t) x_{3}^{2}(t) \\
-4 x_{1}^{2}(t) x_{3}^{5}(t)
\end{array}\right)
$$

Stability of Dynamical Systems

Nothing tells us how to find such a function V...
And it's not a simple problem.

$$
\dot{x}(t)=\left(\begin{array}{c}
-6 x_{1}^{4}(t) x_{2}^{5}(t)-3 x_{1}^{7}(t) x_{3}^{2}(t) \\
3 x_{1}^{9}(t)-6 x_{1}^{2}(t) x_{2}^{5}(t) x_{3}^{2}(t) \\
-4 x_{1}^{2}(t) x_{3}^{5}(t)
\end{array}\right)
$$

The system is stable, a Lyapunov function is

$$
V(x)=x_{1}^{6}+2\left(x_{2}^{6}+x_{3}^{4}\right)
$$

Stability of Dynamical Systems

A globally asymptotically stable polynomial vector field with no polynomial Lyapunov function
Publisher: IEEE

```
Cite This
```

© PDF
Amir Ali Ahmadi ; Miroslav Krstic ; Pablo A. Parrilo All Authors

39	399			
Cites in	Full	(${ }^{\text {a }}$	(C)	-

Papers Text Views

Stability of Dynamical Systems

Today, more than a hundred years later, it is still an open question:
there is still no systematic way to construct a Lyapunov function.

Stability of Dynamical Systems

Today, more than a hundred years later, it is still an open question:
there is still no systematic way to construct a Lyapunov function.
\rightarrow We resort to intuition

Stability of Dynamical Systems

- Intuition, an important concept in mathematics.

Stability of Dynamical Systems

- Intuition, an important concept in mathematics.
- In a number of cases, intuition resembles a kind of pattern recognition. You've seen plenty of examples, and this gives you an idea of how to proceed in a case you've never seen.

Stability of Dynamical Systems

- Intuition, an important concept in mathematics.
- In a number of cases, intuition resembles a kind of pattern recognition. You've seen plenty of examples, and this gives you an idea of how to proceed in a case you've never seen.
- Can we train an Al to have better intuition than us?

Stability of Dynamical Systems

■ Intuition, an important concept in mathematics.

- In a number of cases, intuition resembles a kind of pattern recognition. You've seen plenty of examples, and this gives you an idea of how to proceed in a case you've never seen.
- Can we train an Al to have better intuition than us?

First task for AI: guessing Lyapunov functions

Stability of Dynamical Systems

■ Intuition, an important concept in mathematics.

- In a number of cases, intuition resembles a kind of pattern recognition. You've seen plenty of examples, and this gives you an idea of how to proceed in a case you've never seen.
- Can we train an AI to have better intuition than us?

First task for Al: guessing Lyapunov functions

$$
\dot{x}(t)=\left(\begin{array}{c}
-6 x_{1}^{4}(t) x_{2}^{5}(t)-3 x_{1}^{7}(t) x_{3}^{2}(t) \\
3 x_{1}^{9}(t)-6 x_{1}^{2}(t) x_{2}^{5}(t) x_{3}^{2}(t) \\
-4 x_{1}^{2}(t) x_{3}^{5}(t)
\end{array}\right) \quad \rightarrow \quad \text { Yes, } V(x)=x_{1}^{6}+2\left(x_{2}^{6}+x_{3}^{4}\right)
$$

Stability of Dynamical Systems

Train an AI to have an intution of Lyapunov function (Alfarano, Charton, A.H., 2023).

Neural network architecture: Transformer (~ 1000 smaller than ChatGPT)

Procedure:

1. Generate a set of systems and associated Lyapunov functions.
2. Encode the examples
3. Train the Transformer (supervised learning)

Stability of Dynamical Systems

Procedure:

1. Generate a set of systems and associated Lyapunov functions.
2. Encode the examples

3. Train the Transformer (supervised learning)

Stability of Dynamical Systems

Results

Type	n equations	degree	SOSTOOLS 1	Al
polynomial	$2-3$	8	78%	$\mathbf{9 9 . 3 \%}$
polynomial	$3-6$	12	16%	$\mathbf{9 5 . 1 \%}$
polynomial (fwd)	$2-3$	6	N/A	$\mathbf{8 3 . 1 \%}$
Non-polynomial	N/A	N/A	N/A	$\mathbf{9 7 . 8 \%}$

[^0]
Stability of Dynamical Systems

Results

Type	n equations	degree	SOSTOOLS 1	Al
polynomial	$2-3$	8	78%	$\mathbf{9 9 . 3 \%}$
polynomial	$3-6$	12	16%	$\mathbf{9 5 . 1 \%}$
polynomial (fwd)	$2-3$	6	N/A	$\mathbf{8 3 . 1 \%}$
Non-polynomial	N/A	N/A	N/A	$\mathbf{9 7 . 8 \%}$

Mathematicians accuracy: $\sim 25 \%$

[^1]
Al in Mathematics Today

Three examples

- Stability of dynamical systems

■ Control theory

- Topology

Control of a Differential System

Evolution of the mosquito population

$$
\left\{\begin{aligned}
\dot{E} & =\beta_{E} F\left(1-\frac{E}{K}\right)-\left(\nu_{E}+\delta_{E}\right) E \\
\dot{M} & =(1-\nu) \nu_{E} E-\delta_{M} M \\
\dot{F} & =\nu \nu_{E} E \frac{M}{M+M_{s}}-\delta_{F} F \\
\dot{M}_{s} & =u-\delta_{s} M_{s}
\end{aligned}\right.
$$

$E(t)$ represents mosquito eggs, $F(t)$ fertilized females, $M(t)$ males, $M_{s}(t)$ sterile males. u is the flow of sterile mosquitoes that we release. This is what is called control.

Control of a Differential System

Evolution of the mosquito population

$$
\left\{\begin{aligned}
\dot{E} & =\beta_{E} F\left(1-\frac{E}{K}\right)-\left(\nu_{E}+\delta_{E}\right) E \\
\dot{M} & =(1-\nu) \nu_{E} E-\delta_{M} M \\
\dot{F} & =\nu_{E} E \frac{M}{M+M_{s}}-\delta_{F} F \\
\dot{M}_{s} & =u-\delta_{s} M_{s}
\end{aligned}\right.
$$

$E(t)$ represents mosquito eggs, $F(t)$ fertilized females, $M(t)$ males, $M_{s}(t)$ sterile males. u is the flow of sterile mosquitoes that we release. This is what is called control.

$$
u=f\left(M+M_{s}, F+F_{s}\right)
$$

with $F_{s}=F M / M_{s}$.

Control of a Differential System

$E(t)$ represents mosquito eggs, $F(t)$ fertilized females, $M(t)$ males, $M_{s}(t)$ sterile males. u is the flow of sterile mosquitoes that we release. This is what is called control.

$$
u=f\left(M+M_{s}, F+F_{s}\right)
$$

Question

Is it possible to find f such that the system is stable and

$$
\lim _{t \rightarrow+\infty}\|E(t), M(t), F(t)\|=0 \text { and } \lim _{t \rightarrow+\infty}\left\|M_{s}(t)\right\|=\varepsilon
$$

with ε as small as desired?

Control of a Differential System

$E(t)$ represents mosquito eggs, $F(t)$ fertilized females, $M(t)$ males, $M_{s}(t)$ sterile males. u is the flow of sterile mosquitoes that we release. This is what is called control.

$$
u=f\left(M+M_{s}, F+F_{s}\right)
$$

Question

Is it possible to find f such that the system is stable and

$$
\lim _{t \rightarrow+\infty}\|E(t), M(t), F(t)\|=0 \text { and } \lim _{t \rightarrow+\infty}\left\|M_{s}(t)\right\|=\varepsilon
$$

with ε as small as desired?
An open question

Control of a Differential System

Principle of the approach (Agbo Bidi, Coron, A.H., Lichtlé, 2023)

Control of a Differential System

Principle of the approach (Agbo Bidi, Coron, A.H., Lichtlé, 2023)

1 Transform the equations using a well-chosen numerical scheme.
2 Train a Reinforcement Learning (RL) model. The AI trains by trial and error and tries to maximize a well-chosen objective.
3 Deduce the mathematical control, from the numerical control.
4 Verify that it is a solution to the problem.

Control of a Differential System

$$
u=f\left(M+M_{s}, F+F_{s}\right)
$$

Control of a Differential System

$$
u=f\left(M+M_{s}, F+F_{s}\right)
$$

Control of a Differential System

$$
u_{\mathrm{reg}}\left(M+M_{s}, F+F_{s}\right)= \begin{cases}u_{\mathrm{reg}}^{\mathrm{left}}\left(M+M_{s}, F+F_{s}\right) & \text { if } M+M_{s}<M^{*}, \\ u_{\mathrm{rghg}}^{\mathrm{irght}}\left(M+M_{s}, F+F_{s}\right) & \text { otherwise }\end{cases}
$$

Control of a Differential System

$$
\begin{aligned}
& u_{\text {reg }}\left(M+M_{s}, F+F_{s}\right)= \begin{cases}u_{\mathrm{reg}}^{\mathrm{left}}\left(M+M_{s}, F+F_{s}\right) & \text { if } M+M_{s}<M^{*}, \\
u_{\mathrm{regh}}^{\text {right }}\left(M+M_{s}, F+F_{s}\right) & \text { otherwise, }\end{cases} \\
& u_{\text {reg }}^{\text {left }}=\left\{\begin{array}{ll}
\varepsilon & \text { if } I_{1}\left(F+F_{s}\right)>\alpha_{2}, \\
u_{\max }\left(\alpha_{2}-I_{1}\right) & \text { if } I_{1} \in\left(\alpha_{1}, \alpha_{2}\right], \\
u_{\max } & \text { otherwise, and }
\end{array} \quad u_{\text {reg }}^{\text {right }}= \begin{cases}\varepsilon & \text { if } I_{2}>\alpha_{2}, \\
u_{\text {max }}\left(\alpha_{2}-I_{2}\right) & \text { if } I_{2} \in\left(\alpha_{1}, \alpha_{2}\right], \\
u_{\text {max }} & \text { otherwise. }\end{cases} \right.
\end{aligned}
$$

where $I_{1}(x)=\frac{\log M^{*}}{\log \left(F+F_{s}\right)}$ and $I_{2}(x, y)=\frac{\log \left(M+M_{s}\right)}{\log \left(F+F_{s}\right)}$,

Control of a Differential System

Final control

$$
u(t)= \begin{cases}\varepsilon & \text { if } \frac{\log \left(M+M_{s}\right)}{\log \left(F+F_{s}\right)}>\alpha_{2} \\ u_{\max } & \text { otherwise }\end{cases}
$$

Control of a Differential System

Final control

$$
u(t)= \begin{cases}\varepsilon & \text { if } \frac{\log \left(M+M_{s}\right)}{\log \left(F+F_{s}\right)}>\alpha_{2} \\ u_{\max } & \text { otherwise }\end{cases}
$$

$$
\varepsilon>0
$$

Control of a Differential System

Final control

$$
u= \begin{cases}\varepsilon & \text { if } \frac{\log \left(M+M_{s}\right)}{\log \left(F+F_{s}\right)}>\alpha_{2} \\ u_{\max } & \text { otherwise }\end{cases}
$$

$$
\varepsilon=0
$$

Control of a Differential System

Final control

$$
u= \begin{cases}\varepsilon & \text { if } \frac{\log \left(M+M_{s}\right)}{\log \left(F+F_{s}\right)}>\alpha_{2} \\ u_{\max } & \text { otherwise }\end{cases}
$$

$$
\varepsilon=0
$$

We can see a mathematical bifurcation with our "Al-augmented intuition".

Al Today in Mathematics

Three examples

■ Stability of dynamical systems

- Control theory
- Topology

Topology

Advancing mathematics by guiding human intuition with AI, 2021, Davies et al.
Principle:
■ We have mathematical objects z with quantities $X(z)$ and $Y(z)$. We would like to know if there is a link between the two.

Topology

Advancing mathematics by guiding human intuition with AI, 2021, Davies et al.
Principle:
■ We have mathematical objects z with quantities $X(z)$ and $Y(z)$. We would like to know if there is a link between the two.

■ We train a neural network to predict $Y(z)$ from $X(z)$
■ We try to understand the function learned by the neural network

$$
Y(z)=\hat{f}(X(z))
$$

Topology

Advancing mathematics by guiding human intuition with Al, 2021, Davies et al.
Principle:
■ We have mathematical objects z with quantities $X(z)$ and $Y(z)$. We would like to know if there is a link between the two.

- We train a neural network to predict $Y(z)$ from $X(z)$

■ We try to understand the function learned by the neural network

$$
Y(z)=\hat{f}(X(z))
$$

In particular, the link between hyperbolic and algebraic invariants of knots (embedding of a circle in \mathbb{R}^{3}).

Al in Mathematics Today

- AI is already useful in the practice of mathematics and has solved several difficult problems.
- Al is trained to have better intuition than humans on a specific problem.
- This augmented intuition allows us to bypass the difficulty of the problem.

Future of Mathematical AI

Can an Al prove a mathematical result on its own?

Can an AI reason?

Outline of the Presentation

1. Al today in mathematics

2. Can Al prove theorems?

Al for Mathematical Proof

■ Can an Al find a proof for a mathematical statement?

- Related question: can we automate human reasoning?

Al for Mathematical Proof

- Can an AI find a proof for a mathematical statement? Many research groups around the world (Ecole des Ponts, Cambridge, Meta AI, OpenAI, etc.)
- Related question: can we automate human reasoning? A research group led by Timothy Gowers in Cambridge.

Al for Mathematical Proof

First approach: training a Transformer (GPT-f, Polu, Sutskever, 2020)

$$
\begin{aligned}
& \text { Question } \\
& \text { Let } a>0 \text { and } b>0 \text {, such that } \\
& a b=b-a \text {, show that } \\
& \qquad \frac{a}{b}+\frac{b}{a}-a b=2
\end{aligned}
$$

Al for Mathematical Proof

First approach: training a Transformer (GPT-f, Polu, Sutskever, 2020)

$$
\begin{aligned}
& \text { Question } \\
& \text { Let } a>0 \text { and } b>0 \text {, such that } \\
& a b=b-a \text {, show that } \\
& \qquad \frac{a}{b}+\frac{b}{a}-a b=2
\end{aligned}
$$

Ilya Sutskever: The OpenAI Genius Who Told Sam Altman He Was Fired
Company's chief scientist led a board coup against one of the most prominent figures in Silicon Valley
-4. sulver
Co-Founder and Chief Scientist of OpenAl
Adresse e-mail validée de openai.com - Page d'accueil
Machine Learning Neural Networks Artificial Intelligence Deep Learning

Al for Mathematical Proof

First approach: training a Transformer (GPT-f, Polu, Sutskever, 2020)

$$
\begin{aligned}
& \text { Question } \\
& \text { Let } a>0 \text { and } b>0 \text {, such that } \\
& a b=b-a \text {, show that } \\
& \qquad \frac{a}{b}+\frac{b}{a}-a b=2
\end{aligned}
$$

Al for Mathematical Proof

Input: Math statement

Al for Mathematical Proof

Input: Math statement

Al for Mathematical Proof

Question

Let $a>0$ and $b>0$, such that $a b=b-a$, show that

$$
\frac{a}{b}+\frac{b}{a}-a b=2
$$

Procedure: train it with examples: (exercises, proofs)

- The hope is that by showing it enough examples, the AI will be capable of learning to reason, just by learning to predict the next step each time.

Al for Mathematical Proof

Question

Let $a>0$ and $b>0$, such that $a b=b-a$, show that

$$
\frac{a}{b}+\frac{b}{a}-a b=2
$$

Procedure: train it with examples: (exercises, proofs)

■ The hope is that by showing it enough examples, the AI will be capable of learning to reason, just by learning to predict the next step each time.

Al for Mathematical Proof

Question

Let $a>0$ and $b>0$, such that $a b=b-a$, show that

$$
\frac{a}{b}+\frac{b}{a}-a b=2
$$

Procedure: train it with examples: (exercises, proofs)

■ The hope is that by showing it enough examples, the AI will be capable of learning to reason, just by learning to predict the next step each time.

Enough $=$ sufficiently diverse and sufficiently numerous

Al for Mathematical Proof

We have very few data available (especially formal).

Al for Mathematical Proof

We have very few data available (especially formal).

Question

Let $a>0$ and $b>0$, such that $a b=b-a$, show that

$$
\frac{a}{b}+\frac{b}{a}-a b=2
$$

informal language

```
theorem Exercice_1
(a b : \mathbb{R})
(ho: a > 0)
(h1: b > 0)
(h2: a*b = b-a) :
a/b+b/a-2*(a*b) = 2 :=
begin
sorry,
end
```

formal language

Al for Mathematical Proof

We have very few data available (especially formal).

Question

Let $a>0$ and $b>0$, such that $a b=b-a$, show that

$$
\frac{a}{b}+\frac{b}{a}-a b=2
$$

informal language

```
theorem Exercice_1
(a b : \mathbb{R}
(he: a > 0)
(h1: b > 0)
(h2: a*b = b-a) :
a/b+b/a-2*(a*b) = 2 :=
begin
sorry,
end
```

formal language
Lean: $\sim 100,000$ theorems. A large dataset for humans, a small dataset for AI.

Al for Mathematical Proof

We have very few data available (especially formal).

Question

Let $a>0$ and $b>0$, such that $a b=b-a$, show that

$$
\frac{a}{b}+\frac{b}{a}-a b=2
$$

informal language

```
theorem Exercice_1
(a b : \mathbb{R}
(he: a > 0)
(h1: b > 0)
(h2: a*b = b-a) :
a/b+b/a-2*(a*b) = 2 :=
begin
sorry,
end
```

formal language
Lean: $\sim 100,000$ theorems. A large dataset for humans, a small dataset for AI. \rightarrow Limit of the approach

AI for Mathematical Proof

We have very few data available (especially formal).

Question

Let $a>0$ and $b>0$, such that $a b=b-a$, show that

$$
\frac{a}{b}+\frac{b}{a}-a b=2
$$

informal language

```
theorem Exercice_1
(a b : \mathbb{R}
(ho: a > 0)
(h1: b > 0)
(h2: a*b = b-a) :
a/b+b/a-2*(a*b) = 2 :=
begin
sorry,
end
```

formal language
Lean: $\sim 100,000$ theorems. A large dataset for humans, a small dataset for AI. \rightarrow Limit of the approach

LeanLlama F. Glöckle et al. 2023 (Temperature-scaled large language models for Lean proofstep prediction)

Al for Mathematical Proof

Second approach: treat mathematics as a game (Lample, Lachaux, Lavril, Martinet, Hayat, Ebner, Rodriguez, Lacroix, 2022)

Al for Mathematical Proof

Second approach: treat mathematics as a game (Lample, Lachaux, Lavril, Martinet, Hayat, Ebner, Rodriguez, Lacroix, 2022)

Deepmind (2017)

Al for Mathematical Proof

Second approach: treat mathematics as a game (Lample, Lachaux, Lavril, Martinet, Hayat, Ebner, Rodriguez, Lacroix, 2022)

You won!

Deepmind (2017)

Al for Mathematical Proof

Main difficulties:

- two-player game vs. solo against a goal.
- In chess, when you play a move you always have a single game. In mathematics: one statement \rightarrow multiple statements
- Difficult in mathematics to know automatically in the middle of a proof what the probability of succeeding is.

- The number of possibilities is much, much larger in mathematics

Al for Mathematical Proof

Main difficulties:

- two-player game vs. solo against a goal.
- In chess, when you play a move you always have a single game. In mathematics: one statement \rightarrow multiple statements
- Difficult in mathematics to know automatically in the middle of a proof what the probability of succeeding is.

- The number of possibilities is much, much larger in mathematics

Al for Mathematical Proof

In practice

- Two transformers: P_{θ} which predicts a tactic, c_{θ} which predicts the difficulty of proving a statement (goal, hypothesis, etc.).
- An intelligent proof search that sees the proof as a tree and combines P_{θ}, c_{θ} and a tree expansion.

Selection

Expansion

Back-propagation

- Training of P_{θ} and c_{θ} as and when what has been successful

Al for Mathematical Proof

Results

Exercises at the undergraduate level...
... 30 to 60% of middle school / high school exercises up to Olympiad level...
...and a few exercises from the International Mathematical Olympiads

Al for Mathematical Proof

Results

Exercises at the undergraduate level...
... 30 to 60% of middle school / high school exercises up to Olympiad level...
...and a few exercises from the International Mathematical Olympiads

Exercise

Show that for all $n \in \mathbb{N}, 7$ does not divide $2^{n}+1$.

Al for Mathematical Proof

Results

Exercises at the undergraduate level...
... 30 to 60% of middle school / high school exercises up to Olympiad level...
...and a few exercises from the International Mathematical Olympiads

Exercise

Show that for all $n \in \mathbb{N}, 7$ does not divide $2^{n}+1$.
(Lample, Lachaux, Lavril, Martinet, Hayat, Ebner, Rodriguez, Lacroix, 2022)

Al for Mathematical Proof

Results

Exercises at the undergraduate level...
... 30 to 60% of middle school / high school exercises up to Olympiad level...
...and a few exercises from the International Mathematical Olympiads

Exercise

Show that for all $n \in \mathbb{N}, 7$ does not divide $2^{n}+1$.
(Lample, Lachaux, Lavril, Martinet, Hayat, Ebner, Rodriguez, Lacroix, 2022)

Unexpected outcomes

French Al start-up Mistral reaches unicorn status, marking its place as Europe's rival to OpenAI

Mistral's value has increased more than sevenfold in six months. It raised nearly €500 million in November and $€ 105$ million in its first funding round.
(Euronews 11/12/2023)

Al for Mathematical Proof

Perspectives:
■ Add (approximations of) human reasoning.

- Add more organized reasoning with a hierarchy of tasks and a foresight of intermediate tasks.

■ Obtain more formal data through self-formalization (Wu et al., Jiang et al. 2022).

Conclusion

- AI is already useful in the practice of mathematics
- AI for proving theorems is only beginning, and there are many ideas... and much to do.

■ The practice of mathematics will probably change... and that's okay.

- Al will not replace mathematicians but will instead enhance them.

Conclusion

Thank you for your attention

[^0]: ${ }^{1}$ Existing method.

[^1]: ${ }^{1}$ Existing method.

