The role of Artificial Intelligence in the future of mathematics

Amaury Hayat CERMICS - Ecole des Ponts Paristech

FAU MoD Lecture

Thursday January 11th, 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Social networks

Emails and apps

Virtual assistants

Platforms

Over the past year, we have heard a lot about the progress of AI, particularly in one field: AI for language.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

How did we get there ?

How did we get there ?

Al for language is not new: research started ${\sim}1950$

How did we get there ?

- \blacksquare AI for language is not new: research started ${\sim}1950$
- A turning point in the years 2010s with the neural networks (large progress in translation, etc.)

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

How did we get there ?

- \blacksquare AI for language is not new: research started ${\sim}1950$
- A turning point in the years 2010s with the neural networks (large progress in translation, etc.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Another turning point in 2017: the Transformer.

A turning point in 2017: the Transformer

Attention is all you need

A Vaswani, N Shazeer, N Parmar... - Advances in neural ..., 2017 - proceedings.neurips.cc

... to attend to all positions in the decoder up to and including that position. We need to prevent

... We implement this inside of scaled dot-product attention by masking out (setting to -∞) ...

☆ Enregistrer 50 Citer Cité 91677 fois Autres articles Les 62 versions 🔊

An attention mechanism, which allows it to focus on the right pieces of a sentence

Hope is a good thing, maybe the best of things and no good thing ever dies.

2018 - GPT - an autoregressive transformer.

Q: Hope is a good

A: Hope is a good thing, maybe the best of things and no good thing ever dies.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline of the Lecture

1. Al today in mathematics

2. Can AI prove theorems?

Outline of the Lecture

1. Al today in mathematics

2. Can AI prove theorems?

Conjecture (Euler, 1769)

If there exist integers a_1 , a_2 ,..., a_k , b, and n such that

$$a_1^n + a_2^n + \ldots + a_k^n = b^n,$$

then $k \geq n$.

A problem open for almost 200 years

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Lander and Parkin (1966)

Lander and Parkin (1966)

$27^5 + 84^5 + 110^5 + 133^5 = 144^5$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

COUNTEREXAMPLE TO EULER'S CONJECTURE ON SUMS OF LIKE POWERS

BY L. J. LANDER AND T. R. PARKIN

Communicated by J. D. Swift, June 27, 1966

A direct search on the CDC 6600 yielded

 $27^5 + 84^5 + 110^5 + 133^5 = 144^5$

as the smallest instance in which four fifth powers sum to a fifth power. This is a counterexample to a conjecture by Euler [1] that at least n nth powers are required to sum to an nth power, n > 2.

Reference

1. L. E. Dickson, *History of the theory of numbers*, Vol. 2, Chelsea, New York, 1952, p. 648.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proof of Keller's Conjecture (Brakensiek, Heule, Mackey, Narváez, 2019)

- A proof with many "simple cases" to check
- Many = far too many for a human

Proof of Keller's Conjecture (Brakensiek, Heule, Mackey, Narváez, 2019)

- A proof with many "simple cases" to check
- Many = far too many for a human
- Size of the proof:

イロト 不得 トイヨト イヨト

Proof of Keller's Conjecture (Brakensiek, Heule, Mackey, Narváez, 2019)

- A proof with many "simple cases" to check
- Many = far too many for a human
- Size of the proof: 200Gb \sim 10 Wikipedias

(日)

$\ensuremath{\mathsf{Conclusion}}$: Computers have been used to prove theorems for a long time.

Conclusion: Computers have been used to prove theorems for a long time.

Can AI solve more complicated problems?

Problems where the difficulty is not just combinatorial?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

AI in Mathematics Today

Three examples

Stability of dynamical systems

- Control theory
- Topology

AI in Mathematics Today

Three examples

Stability of dynamical systems

- Control theory
- Topology

A system of differential equations

 $\dot{x}(t)=f(x(t)),$

A point in free fall.

$$\dot{y}(t) = v(t)$$

 $\dot{v}(t) = -g,$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

The evolution of a chemical reaction

$$\dot{x} = -\alpha x(t) + (1 - x(t)),$$

$$\dot{y} = \alpha x(t) - y(t),$$

The Solow model in economics

$$\dot{K}(t) = sF(K(t), aL(t)) - \delta Kv(t)$$

 $\dot{L}(t) = nL(t),$

$$\dot{x}(t)=f(x(t)),$$

$$\dot{x}(t)=f(x(t)),$$
 where $x(t)\in \mathbb{R}^n,~f\in C^1(\mathbb{R}^n)$ and $f(0)=0.$

 $\dot{x}(t)=f(x(t)),$

where $x(t) \in \mathbb{R}^n$, $f \in C^1(\mathbb{R}^n)$ and f(0) = 0.

Question (System Stability)

Is it true that for every $\varepsilon > 0$, there exists $\delta > 0$ such that if the initial condition satisfies $||x(0)|| \le \delta$ then the solution x(t) exists for all $t \in [0, +\infty)$ and

 $\|x(t)\| \leq \varepsilon, \ \forall \ t \in [0, +\infty).$

 $\dot{x}(t)=f(x(t)),$

where $x(t) \in \mathbb{R}^n$, $f \in C^1(\mathbb{R}^n)$ and f(0) = 0.

Question (System Stability)

Is it true that for every $\varepsilon > 0$, there exists $\delta > 0$ such that if the initial condition satisfies $||x(0)|| \le \delta$ then the solution x(t) exists for all $t \in [0, +\infty)$ and

 $\|x(t)\| \leq \varepsilon, \ \forall \ t \in [0, +\infty).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Are all solutions bounded if the initial condition is sufficiently small?

 $\dot{x}(t)=f(x(t)),$

where $x(t) \in \mathbb{R}^n$, $f \in C^1(\mathbb{R}^n)$ and f(0) = 0.

Question (System Stability)

Is it true that for every $\varepsilon > 0$, there exists $\delta > 0$ such that if the initial condition satisfies $||x(0)|| \le \delta$ then the solution x(t) exists for all $t \in [0, +\infty)$ and

 $\|x(t)\| \leq \varepsilon, \ \forall \ t \in [0, +\infty).$

Are all solutions bounded if the initial condition is sufficiently small?

A problem that has interested mathematicians for over a hundred years.

A significant advancement: Lyapunov functions

Theorem

If there exists a function $V \in C^1(\mathbb{R}^n; \mathbb{R})$ such that for all $x \in \mathbb{R}^n$

$$V(x) > V(0),$$
 and $\nabla V(x) \cdot f(x) \le 0,$

and

$$\lim_{\|x\|\to+\infty}V(x)=+\infty,$$

then the system is stable.

A. Lyapunov (1857-1918)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A significant advancement: Lyapunov functions

Theorem

If there exists a function $V \in C^1(\mathbb{R}^n; \mathbb{R})$ such that for all $x \in \mathbb{R}^n$

$$V(x) > V(0)$$
, and $\nabla V(x) \cdot f(x) \le 0$,

and

$$\lim_{\|x\|\to+\infty}V(x)=+\infty,$$

then the system is stable.

A. Lyapunov (1857-1918)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Nothing tells us how to find such a function V...

Nothing tells us how to find such a function V...

And it's not a simple problem.

Nothing tells us how to find such a function V...

And it's not a simple problem.

$$\dot{x}(t) = \begin{pmatrix} -6x_1^4(t)x_2^5(t) - 3x_1^7(t)x_3^2(t) \\ 3x_1^9(t) - 6x_1^2(t)x_2^5(t)x_3^2(t) \\ -4x_1^2(t)x_3^5(t) \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Nothing tells us how to find such a function V...

And it's not a simple problem.

$$\dot{x}(t) = egin{pmatrix} -6x_1^4(t)x_2^5(t) - 3x_1^7(t)x_3^2(t) \ 3x_1^9(t) - 6x_1^2(t)x_2^5(t)x_3^2(t) \ -4x_1^2(t)x_3^5(t) \end{pmatrix}$$

The system is stable, a Lyapunov function is

$$V(x) = x_1^6 + 2(x_2^6 + x_3^4)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A globally asymptotically stable polynomial vector field with no polynomial Lyapunov function

 Publisher: IEEE
 Cite This
 PDF

 Amir Ali Ahmadi ; Miroslav Krstic ; Pablo A. Parrilo
 All Authors

 39
 399

 Cites in
 Full

 Papers
 Text Views

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Today, more than a hundred years later, it is still an open question:

there is still no systematic way to construct a Lyapunov function.

Today, more than a hundred years later, it is still an open question:

there is still no systematic way to construct a Lyapunov function.

 \rightarrow We resort to intuition

Intuition, an important concept in mathematics.

- Intuition, an important concept in mathematics.
- In a number of cases, intuition resembles a kind of pattern recognition. You've seen plenty of examples, and this gives you an idea of how to proceed in a case you've never seen.

- Intuition, an important concept in mathematics.
- In a number of cases, intuition resembles a kind of pattern recognition. You've seen plenty of examples, and this gives you an idea of how to proceed in a case you've never seen.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Can we train an AI to have better intuition than us?

- Intuition, an important concept in mathematics.
- In a number of cases, intuition resembles a kind of pattern recognition. You've seen plenty of examples, and this gives you an idea of how to proceed in a case you've never seen.
- Can we train an AI to have better intuition than us?

First task for AI: guessing Lyapunov functions

- Intuition, an important concept in mathematics.
- In a number of cases, intuition resembles a kind of pattern recognition. You've seen plenty of examples, and this gives you an idea of how to proceed in a case you've never seen.
- Can we train an AI to have better intuition than us?

First task for AI: guessing Lyapunov functions

$$\dot{x}(t) = \begin{pmatrix} -6x_1^4(t)x_2^5(t) - 3x_1^7(t)x_3^2(t) \\ 3x_1^9(t) - 6x_1^2(t)x_2^5(t)x_3^2(t) \\ -4x_1^2(t)x_3^5(t) \end{pmatrix} \quad \rightarrow \quad \text{Yes, } V(x) = x_1^6 + 2(x_2^6 + x_3^4)$$

Train an AI to have an intution of Lyapunov function (Alfarano, Charton, A.H., 2023).

Neural network architecture: Transformer (\sim 1000 smaller than ChatGPT)

Procedure:

1. Generate a set of systems and associated Lyapunov functions.

- 2. Encode the examples
- 3. Train the Transformer (supervised learning)

Procedure:

- 1. Generate a set of systems and associated Lyapunov functions.
- 2. Encode the examples

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

3. Train the Transformer (supervised learning)

Results

Туре	n equations	degree	SOSTOOLS1	AI
polynomial	2-3	8	78%	99.3%
polynomial	3-6	12	16%	95.1%
polynomial (fwd)	2-3	6	N/A	83.1%
Non-polynomial	N/A	N/A	N/A	97.8%

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

¹Existing method.

Results

Туре	n equations	degree	SOSTOOLS1	AI
polynomial	2-3	8	78%	99.3%
polynomial	3-6	12	16%	95.1%
polynomial (fwd)	2-3	6	N/A	83.1%
Non-polynomial	N/A	N/A	N/A	97.8%

Mathematicians accuracy: $\sim 25\%$

¹Existing method.

AI in Mathematics Today

Three examples

Stability of dynamical systems

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Control theory
- Topology

Evolution of the mosquito population

$$\begin{cases} \dot{E} = \beta_E F \left(1 - \frac{E}{K} \right) - \left(\nu_E + \delta_E \right) E \\ \dot{M} = (1 - \nu) \nu_E E - \delta_M M, \\ \dot{F} = \nu \nu_E E \frac{M}{M + M_s} - \delta_F F, \\ \dot{M}_s = u - \delta_s M_s, \end{cases}$$

E(t) represents mosquito eggs, F(t) fertilized females, M(t) males, $M_s(t)$ sterile males. u is the flow of sterile mosquitoes that we release. This is what is called *control*.

Evolution of the mosquito population

$$\begin{cases} \dot{E} = \beta_E F \left(1 - \frac{E}{K} \right) - \left(\nu_E + \delta_E \right) E, \\ \dot{M} = (1 - \nu) \nu_E E - \delta_M M, \\ \dot{F} = \nu \nu_E E \frac{M}{M + M_s} - \delta_F F, \\ \dot{M}_s = u - \delta_s M_s, \end{cases}$$

E(t) represents mosquito eggs, F(t) fertilized females, M(t) males, $M_s(t)$ sterile males. u is the flow of sterile mosquitoes that we release. This is what is called *control*.

$$u = f(M + M_s, F + F_s)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

with $F_s = FM/M_s$.

E(t) represents mosquito eggs, F(t) fertilized females, M(t) males, $M_s(t)$ sterile males. u is the flow of sterile mosquitoes that we release. This is what is called *control*.

$$u = f(M + M_s, F + F_s)$$

Question

Is it possible to find f such that the system is stable and

$$\lim_{t\to+\infty} \|E(t), M(t), F(t)\| = 0 \text{ and } \lim_{t\to+\infty} \|M_s(t)\| = \varepsilon,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

with ε as small as desired?

E(t) represents mosquito eggs, F(t) fertilized females, M(t) males, $M_s(t)$ sterile males. u is the flow of sterile mosquitoes that we release. This is what is called *control*.

$$u = f(M + M_s, F + F_s)$$

Question

Is it possible to find f such that the system is stable and

$$\lim_{t\to+\infty} \|E(t), M(t), F(t)\| = 0 \text{ and } \lim_{t\to+\infty} \|M_s(t)\| = \varepsilon,$$

with ε as small as desired?

An open question

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Principle of the approach (Agbo Bidi, Coron, A.H., Lichtlé, 2023)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Principle of the approach (Agbo Bidi, Coron, A.H., Lichtlé, 2023)

- **1** Transform the equations using a well-chosen numerical scheme.
- **2** Train a Reinforcement Learning (RL) model. The AI trains by trial and error and tries to maximize a well-chosen objective.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- **3** Deduce the mathematical control, from the numerical control.
- **4** Verify that it is a solution to the problem.

 $u = f(M + M_s, F + F_s)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $u = f(M + M_s, F + F_s)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$u_{\rm reg}(M + M_s, F + F_s) = \begin{cases} u_{\rm reg}^{\rm left}(M + M_s, F + F_s) & \text{if } M + M_s < M^*, \\ u_{\rm reg}^{\rm right}(M + M_s, F + F_s) & \text{otherwise,} \end{cases}$$

$$u_{\rm reg}(M + M_s, F + F_s) = \begin{cases} u_{\rm reg}^{\rm left}(M + M_s, F + F_s) & \text{ if } M + M_s < M^*, \\ u_{\rm reg}^{\rm right}(M + M_s, F + F_s) & \text{ otherwise,} \end{cases}$$

$$u_{\text{reg}}^{\text{left}} = \begin{cases} \varepsilon & \text{if } f_1(F + F_s) > \alpha_2, \\ u_{\text{max}}(\alpha_2 - l_1) & \text{if } l_1 \in (\alpha_1, \alpha_2], \\ u_{\text{max}} & \text{otherwise, and} \end{cases} \qquad \qquad u_{\text{reg}}^{\text{right}} = \begin{cases} \varepsilon & \text{if } l_2 > \alpha_2, \\ u_{\text{max}}(\alpha_2 - l_2) & \text{if } l_2 \in (\alpha_1, \alpha_2], \\ u_{\text{max}} & \text{otherwise.} \end{cases}$$

where
$$I_1(x) = rac{\log M^*}{\log(F+F_s)}$$
 and $I_2(x,y) = rac{\log(M+M_s)}{\log(F+F_s)}$,

Final control

$$u(t) = \begin{cases} \varepsilon & \text{if } \frac{\log(M+M_s)}{\log(F+F_s)} > \alpha_2, \\ u_{\max} & \text{otherwise,} \end{cases}$$

Final control

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Final control

 $\varepsilon = 0$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Final control

We can see a mathematical bifurcation with our "Al-augmented intuition".

AI Today in Mathematics

Three examples

Stability of dynamical systems

- Control theory
- Topology

Topology

Advancing mathematics by guiding human intuition with AI, 2021, Davies et al.

Principle:

• We have mathematical objects z with quantities X(z) and Y(z). We would like to know if there is a link between the two.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Topology

Advancing mathematics by guiding human intuition with AI, 2021, Davies et al.

Principle:

- We have mathematical objects z with quantities X(z) and Y(z). We would like to know if there is a link between the two.
- We train a neural network to predict Y(z) from X(z)
- We try to understand the function learned by the neural network

$$Y(z) = \hat{f}(X(z)).$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Topology

Advancing mathematics by guiding human intuition with AI, 2021, Davies et al.

Principle:

- We have mathematical objects z with quantities X(z) and Y(z). We would like to know if there is a link between the two.
- We train a neural network to predict Y(z) from X(z)
- We try to understand the function learned by the neural network

$$Y(z)=\hat{f}(X(z)).$$

In particular, the link between hyperbolic and algebraic invariants of knots (embedding of a circle in \mathbb{R}^3).

AI in Mathematics Today

- Al is already useful in the practice of mathematics and has solved several difficult problems.
- Al is trained to have better intuition than humans on a specific problem.
- This augmented intuition allows us to bypass the difficulty of the problem.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

The role of Artificial Intelligence in the future of mathematics

Future of Mathematical AI

Can an AI prove a mathematical result on its own?

Can an AI reason?

Outline of the Presentation

1. Al today in mathematics

2. Can AI prove theorems?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

The role of Artificial Intelligence in the future of mathematics

AI for Mathematical Proof

Can an AI find a proof for a mathematical statement?

Related question: can we automate human reasoning?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

 Can an Al find a proof for a mathematical statement? Many research groups around the world (Ecole des Ponts, Cambridge, Meta Al, OpenAl, etc.)

Related question: can we automate human reasoning? A research group led by Timothy Gowers in Cambridge.

First approach: training a Transformer (GPT-f, Polu, Sutskever, 2020)

Question

Let a > 0 and b > 0, such that ab = b - a, show that $\frac{a}{b} + \frac{b}{a} - ab = 2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

First approach: training a Transformer (GPT-f, Polu, Sutskever, 2020)

Question

Let a > 0 and b > 0, such that ab = b - a, show that $\frac{a}{b} + \frac{b}{a} - ab = 2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Ilva Sutskever

😪 SUIVRE

Co-Founder and Chief Scientist of OpenAl Adresse e-mail validée de openai.com - <u>Page d'accueil</u> Machine Learning Neural Networks Artificial Intelligence Deep Learning

ARTICLES CITÉE PAR ACCÈS PUBLIC COAUTEURS

▲□▶▲□▶▲□▶▲□▶ □ のQの

Ilya Sutskever: The OpenAI Genius Who Told Sam Altman He Was Fired

Company's chief scientist led a board coup against one of the most prominent figures in Silicon Valley

First approach: training a Transformer (GPT-f, Polu, Sutskever, 2020)

Question

Let a > 0 and b > 0, such that ab = b - a, show that $\frac{a}{b} + \frac{b}{a} - ab = 2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Proof: Step 1; Step 2; ...; Step n.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Proof: Step 1; Step 2; ... ; Step n.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Procedure: train it with examples: (exercises, proofs)

• The hope is that by showing it enough examples, the AI will be capable of learning to reason, just by learning to predict the next step each time.

Procedure: train it with examples: (exercises, proofs)

The hope is that by showing it enough examples, the AI will be capable of learning to reason, just by learning to predict the next step each time.

Procedure: train it with examples: (exercises, proofs)

The hope is that by showing it enough examples, the AI will be capable of learning to reason, just by learning to predict the next step each time.

Enough = sufficiently diverse and sufficiently numerous

We have very few data available (especially formal).

We have very few data available (especially formal).

Question

Let a > 0 and b > 0, such that ab = b - a, show that $\frac{a}{b} + \frac{b}{a} - ab = 2$

informal language

theorem Exercice_1
(a b : R)
(ho: a > 0)
(h1: b > 0)
(h2: a*b = b-a) :
a/b+b/a-2*(a*b) = 2 :=
begin
Sorry,
end

formal language

We have very few data available (especially formal).

Question
Let $a > 0$ and $b > 0$, such that $ab = b - a$, show that
$\frac{a}{b} + \frac{b}{a} - ab = 2$

informal language

theorem Exercice_1
(a b : ℝ)
(h₀: a > 0)
(h1: b > 0)
(h2: a*b = b-a) :
a/b+b/a-2*(a*b) = 2 :=
begin
sorry,
end

formal language

Lean: ${\sim}100{,}000$ theorems. A large dataset for humans, a small dataset for Al.

We have very few data available (especially formal).

informal language

theorem Exercice_1
(a b : ℝ)
(h₀: a > 0)
(h1: b > 0)
(h2: a*b = b-a) :
a/b+b/a-2*(a*b) = 2 :=
begin
sorry,
end

formal language

Lean: ${\sim}100,000$ theorems. A large dataset for humans, a small dataset for Al. ${\rightarrow}$ Limit of the approach

We have very few data available (especially formal).

Question
Let $a > 0$ and $b > 0$, such that $ab = b - a$, show that
$rac{a}{b}+rac{b}{a}-ab=2$

informal language

```
theorem Exercice_1
(a b : ℝ)
(h₀: a > 0)
(h₁: b > 0)
(h₂: a*b = b-a) :
a/b+b/a-2*(a*b) = 2 :=
begin
sorry,
end
```

formal language

Lean: ~100,000 theorems. A large dataset for humans, a small dataset for Al. \rightarrow Limit of the approach

LeanLlama F. Glöckle et al. 2023 (Temperature-scaled large language models for Lean proofstep prediction)

Second approach: treat mathematics as a game (Lample, Lachaux, Lavril, Martinet, Hayat, Ebner, Rodriguez, Lacroix, 2022)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Second approach: treat mathematics as a game (Lample, Lachaux, Lavril, Martinet, Hayat, Ebner, Rodriguez, Lacroix, 2022)

Deepmind (2017)

Second approach: treat mathematics as a game (Lample, Lachaux, Lavril, Martinet, Hayat, Ebner, Rodriguez, Lacroix, 2022)

Deepmind (2017)

You won !

Main difficulties:

- two-player game vs. solo against a goal.
- In chess, when you play a move you always have a single game. In mathematics: one statement → multiple statements
- Difficult in mathematics to know automatically in the middle of a proof what the probability of succeeding is.
- The number of possibilities is much, much larger in mathematics

You won !

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Main difficulties:

- two-player game vs. solo against a goal.
- In chess, when you play a move you always have a single game. In mathematics: one statement → multiple statements
- Difficult in mathematics to know automatically in the middle of a proof what the probability of succeeding is.
- The number of possibilities is much, much larger in mathematics

Much more difficult than chess

You won !

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

In practice

- Two transformers: P_{θ} which predicts a tactic, c_{θ} which predicts the difficulty of proving a statement (goal, hypothesis, etc.).
- An intelligent proof search that sees the proof as a tree and combines P_{θ} , c_{θ} and a tree expansion.

イロト 不得 トイヨト イヨト

-

Training of P_{θ} and c_{θ} as and when what has been successful

Results

Exercises at the undergraduate level...

 $\dots 30$ to 60% of middle school / high school exercises up to Olympiad level...

...and a few exercises from the International Mathematical Olympiads

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Results

Exercises at the undergraduate level...

 $\dots 30$ to 60% of middle school / high school exercises up to Olympiad level...

...and a few exercises from the International Mathematical Olympiads

Exercise

Show that for all $n \in \mathbb{N}$, 7 does not divide $2^n + 1$.

Results

Exercises at the undergraduate level...

 $\dots 30$ to 60% of middle school / high school exercises up to Olympiad level...

...and a few exercises from the International Mathematical Olympiads

Exercise

Show that for all $n \in \mathbb{N}$, 7 does not divide $2^n + 1$.

(Lample, Lachaux, Lavril, Martinet, Hayat, Ebner, Rodriguez, Lacroix, 2022)

Results

Exercises at the undergraduate level...

 $\dots 30$ to 60% of middle school / high school exercises up to Olympiad level...

...and a few exercises from the International Mathematical Olympiads

Exercise

Show that for all $n \in \mathbb{N}$, 7 does not divide $2^n + 1$.

(Lample, Lachaux, Lavril, Martinet, Hayat, Ebner, Rodriguez, Lacroix, 2022)

Unexpected outcomes

French AI start-up Mistral reaches unicorn status, marking its place as Europe's rival to OpenAI

Mistral's value has increased more than sevenfold in six months. It raised nearly €500 million in November and €105 million in its first funding round.

(Euronews 11/12/2023)

Perspectives:

- Add (approximations of) human reasoning.
- Add more organized reasoning with a hierarchy of tasks and a foresight of intermediate tasks.
- Obtain more formal data through self-formalization (Wu et al., Jiang et al. 2022).

Conclusion

- Al is already useful in the practice of mathematics
- Al for proving theorems is only beginning, and there are many ideas... and much to do.
- The practice of mathematics will probably change... and that's okay.

Al will not replace mathematicians but will instead enhance them.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Conclusion

Thank you for your attention

