Friedrich-Alexander-Universitat ‘E
Naturwissenschaftliche Fakultat

The Turnpike phenomenon for Optimal Control
Problems under Uncertainty

Michael Schuster, Noboru Sakamoto
2025 June 24, Erlangen

Friedrich-Alexander Universitat Erlangen-Nurnberg (FAU),
Nanzan University Nagoya



Motivation
The Turnpike Phenomenon
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® There is a fastest route between any two
points and if the origin and destination are
close together and far from the turnpike, the
best route may not touch the turnpike.

® But if origin and destination are far enough
apart, it will always pay to get on to the
turnpike and cover distance at the best rate
of travel, even if this means adding a little
mileage at either end.

[Dorfman, Samuelson, Solow, 1958]: Linear Programming and
Economic Analysis. New York: McGraw-Hill
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Motivation
The Turnpike Phenomenon

Consider the optimal control problem governed by the transport equation with feedback control

min JT(u):/O fu(t),r(t, L)) dt

ueL?(0,T)

st. r(t,x)+cery(t,x) =mr(t, x), Tini<37>
r(0, ) = rini(x),
T<t7 O) — g(u<t)7 T(tv L))a
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Motivation |n§/A\\U

The Turnpike Phenomenon

Consider the optimal control problem governed by the transport equation with feedback control

T N
i Jr(u) = /O fult),r(t, L)) dt L
é.t. ri(t, o) + crp(t,z) = mr(t, x), Tini(m) u(ty) / lu(ts) u(ts)
r(0, ) = rini(), 4
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Motivation |;/A%\\U

The Turnpike Phenomenon

Consider the optimal control problem governed by the transport equation with random initial data, random source term
and with feedback control

T 241 —expect‘ec_j initial statc‘a.
min Tnlw) — (’LL £).E[r(t. L ) dt 5o | | random initial scenarios

ueL?(0,7) T( ) A / (> [ ( )] = 20}
st r(t,x) + ery(t,z) = m” r(t, x), “Eqgl
r(0,2) = riy(z), 16+

r(t,0) = g (u(t), E[(t. L)]), \
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Motivation |;/A%\\U

The Turnpike Phenomenon

Consider the optimal control problem governed by the transport equation with random initial data, random source term
and with feedback control

T 24 [ expected initial state
. | | random initial scenarios
min  Jp(u) = / f(u(t), E[r(t, L)]) dt 22
weL2(0,T) 0 — 20]
>
st r(t,x) + ery(t,z) = m” r(t, x), 1Z1g!
W
r(0,x) = (), 16
r(t,0) = g (u(). E[r(t.L)] ), \
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A Turnpike Result for the Transport Eq. EAU

Deterministic Optimal Control

For ¢ > 0 consider the transport equation in one dimension
ri(t,x) + cr(t,x) =mr(t,x),
with initial condition and boundary control

r(0,x) =rip(x)  and  r(¢,0) = u(t).

For convex functions f and ¢ consider the optimal control problems

Dynamic Optimal Control Problem Static Optimal Control Problem

i Jr(u) = /0 f(u(t)) +g(r(t, L)) dt min J(u) = f(u) + g(r(L))
st. r(t,x) 4+ cru(t,x) = mr(t, x), st. cr.(x) =mr(x),
r(0,2) = rini(z), r(0) = u.

r(t,0) = u(t).
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A Turnpike Result for the Transport Eq. EAU

Deterministic Optimal Control

(A1) Fore > 0 let functions f and g satisfy

(f'(@1) = f'(@a)) (21— 22) + (6 (1) — 9'(92) (w1 — 92) > € |lz — aaf5.
(A2) Let the derivative of g be Lipschitz continuous with Lipschitz constant Ly, i.e.,

19'(y1) — g'(w2)ll2 < L |lyr — w2lla-
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A Turnpike Result for the Transport Eq.

Deterministic Optimal Control
(A1) For e > 0 let functions f and g satisfy

(f'(@1) = f'(@a)) (21— 22) + (6 (1) — 9'(92) (w1 — 92) > € |lz — aaf5.
(A2) Let the derivative of g be Lipschitz continuous with Lipschitz constant Ly, i.e.,

19'(y1) — g'(w2)ll2 < L |lyr — w2lla-

Theorem: Deterministic Turnpike 30k

=AU

The optimal solution u’(t) of the dynamic optimal 0 ' '
control problem E
T 1or dynamic control
— static control
ue%%}{)lT) JT(U) - /O f(U(t)) T g(r(t, L)> dt % 012 014 O.‘6 O‘.8 1‘ 1!2 1‘4 1‘.6 1‘8 2
’ tin hours
st. m(t,x) +cery(t,z) =mr(t, x), o
r(0,z) = rini(z), r(t,0) = u(t). :6_/% T’\
and the optimal solution u“ of the corresponding S14F
static problem satisfy the integral turnpike property 12 | [ dynamio sat at L
- ) 2 10O _s;azccontr:jt)(:L 0‘6 0‘8 1‘ 1‘2 1‘4 1‘6 1‘8 2
| It~ < c. T e
0
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A Turnpike Result for the Transport Eq. EAU

Deterministic Optimal Control

Sketch of the proof.

Part I: The solution of the transport equation is given by
exp( mt ) rini( © — ct ) x> ct

r(t,r) =
(#,) exp(m%)u(t—%) r<ct

Part Il: The derivative of the objective function is given by
Jp(u) = f'(u(t) +k g'(k u(t)) ¢(t),

1 0<t<T-%
0 else '

with £ = exp <m%) and ¥ (t) = {

Part IlI: Let «° (t) and u? be the optimal dynamic and static solution. Then we have necessary optimality condition

F @) = f(w)=kg(ku’) —kg(ku'®) vt
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A Turnpike Result for the Transport Eq. EAU

Deterministic Optimal Control

Sketch of the proof.

Part IV: Starting from assumption (A1) we have
s/OT () — |2 dt < /OT (f’(u5(t)) _ f’(ua)> <u5(t) _ ua) + (g’(f,a5(t, L) - g’(rU(LD) (Té(t, L) — To@)) dt

(apply necessary optimality conditions, use integration by substitution)

g/OT\yu5(t)—u0\y§dt < /T kg (ku) (u5<t)—u0) dt

T —

)

(apply Cauchy-Schwarz inequality and (A2))

LSRN

(g’( exp(mt)rini(L — ct)) — g’(ku”)) (exp(mt)rini(L —ct) — ku”) dt

g o Lk‘
e [lw'®) = w Ny < 20 W) —ulzory + = 23 Irin(@) 1 720,0) + 25
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A Turnpike Result for the Transport Eq. EAU

Optimal Control under Uncertainty

Assume that the initial data is given by a randomized Fourier series, i.e., for a famiy of identically distributed random
variables, we have

A (Tini) -= /OL Fini (2 )0 () dz, V() = ﬁ((§ + m7r> f)’ ro(x) = i Em(W) am(Tini) Ym(z).

m=0

FAU M. Schuster The Turnpike Phenomenon under Uncertainty 9/18



A Turnpike Result for the Transport Eq.

Optimal Control under Uncertainty

=AU

Assume that the initial data is given by a randomized Fourier series, i.e., for a famiy of identically distributed random

variables, we have

Theorem: TP with uncertain initial data

The optimal solution u’(t) of the dynamic optimal
control problem

uexg%i(aT) Jr(u) = /0 f(u®)) + g(E[r(t, L)]) dt
st. m(t,x) +cery(t,z) =mr(t, z),

r(0,2) = rig(x), r(t,0) = u(?).

and the optimal solution u° of the corresponding
static problem satisfy the integral turnpike property

T
/ |u’(t) —ul||3dt < C.
0
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A Turnpike Result for the Transport Eq. EAU

Optimal Control under Uncertainty

We randomize the source term by a random variable £ on an appropriate probability space: m~“ :=¢(w), w € 2

(A3) Assume that ey(t) is uniformly bounded, where ¢ is defined as (A4) Assume that
@) (©.9) L
ep: [0, T] = RU{£oo} t+ / exp(zt) oe(2) dz, / exp (zz) 0e(2)dz < o0
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A Turnpike Result for the Transport Eq.
Optimal Control under Uncertainty

We randomize the source term by a random variable £ on an appropriate probability space: m“ :

(A3) Assume that ey(t) is uniformly bounded, where ¢ is defined as (A4) Assume that

ep: 0, T] > RU{+oo} t+— /OO exp(zt) oe(2) dz, .

Theorem: TP with randomized source term 30

©.¢)

/OO exp (zé) 0e(2)dz < o0

N | e
The optimal solution u’(t) of the dynamic optimal 20| : '
control problem g
T or dynamic control
o — static control
ey ) = /0 e R e e e e o e i
in hour
st. 1t x) + ery(t,z) =m” r(t, z), 0. e
r(0,z) = rini(z), 7(¢,0) = u(?). . [ b e o
and the optimal solution ©? of the corresponding 2 | BN
static problem satisfy the integral turnpike property 2 = :?f Ai
T %ﬁw \ \ \ \ | \ \7;:\
/0 Hué(t) . ua”% dt < C. oo 0.2 0.4 0.6 0.8 . r:ours 1.2 1.4 1.6 1.8 2
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A Turnpike Result for the Transport Eq. EAU

Optimal Control under Uncertainty

Sketch of the proof.

Part I: Compute the solution (¢, =) of the transport equation

Part Il: Compute the expected value in the objective functlon
For a random variable X and a function & we have E(h(X)) = [*°_h(z) ox(z) dz. Thus we have

/ F(u dt+/ g(E((t,2)) ) dt
/ Flult)) dt + / g(rini(L—ct) / Zexp(zt) 0e(2) dz) dt + / Tg(u(t—%) / ZeXp (z%) 0e(2) dz) dt
/ flu dt+/ g(eot) rimi( L — ct)) dt+/;g(61 u(t—%)) dt

Part lll: Compute the derivative of the objective function
Part IV: State the necessary optimality conditions

Part V: Get the Turnpike estimate by applying (A1) and (A2) [
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A Turnpike Result for the Transport Eq. EAU

Optimal Control under Uncertainty

A turnpike inequality also holds for the expected values, i.e., under the assumptions of the last theorem we have:
T
/ [E[(t,2)] —E[r"(2)]|,dt <C  Vae0,L].
0

Since the variances depend on the squared expected states, a stronger assumption is necessary to guarantee the
convergence of the squared controls:
(A5) For e > 0 let functions f and g satisfy

(f'(21) = f'(22)) (21 — 22) + (¢ (1) — 9'(42)) (1 — 42) > € [|la] — a3]5-
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A Turnpike Result for the Transport Eq. EAU

Optimal Control under Uncertainty

A turnpike inequality also holds for the expected values, i.e., under the assumptions of the last theorem we have:
T
/ [E[(t,2)] —E[r"(@)]|,dt <C  Vxe[o,L].
0

Since the variances depend on the squared expected states, a stronger assumption is necessary to guarantee the
convergence of the squared controls:
(A5) For € > 0 let functions f and ¢ satisfy

(f'(21) = f'(22)) (21 — 22) + (¢ (1) — 9'(42)) (1 — 42) > € [|la] — a3]5-

Theorem: TP for the variances

Under the assumptions (A2) - (A5), the optimal controls u‘s(t) and u? satisfy the turnpike inequality

T
/0 | (t)? — ()2 dt < C,
and for the variances of the corresponding optimal states we have

/T H\/ar [ré(t, )| — Var[r?(z)] Hz dt <C.
0
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A Turnpike Result for the Transport Eq. EAU

Optimal Control under Uncertainty

We have the convergence results

lim /0 r(t, z,w) dt = r°(z,w), lim /0 ]E[r5(t, z)| =E|r7(z)], lim /0 Var [r‘s(t,x)] = Var[r?(z)].

T—o0 T—o0 T—o0
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A Turnpike Result for the Transport Eq.
Optimal Control under Uncertainty

We have the convergence results
T T T

lim / r(t, z,w) dt = r°(z,w), lim / E [r5(t, z)| =E|r7(z)], lim / Var [r‘s(t, z)| = Var[r?(z)].

= The 80% confidence interval around the expected steady state [E [r"(x)] also contains 80% of the dynamic random

T—o0

scenarios.
101 101
=R ! g .
=] 0 / ; p—— ;\ 3 0 I/\lv 1
N | | | ] 1 | | | 1 ]
50 05 1 15 2 25 3 0 05 1 15 2 25 3
tin hours tin hours
25 expected dynamic state

expected static state
random dynamic scenarios
80% confidence interval of expected static state

expected dynamic state
expected static state

random dynamic scenarios

80% confidence interval of expected static state

| |
2 2.5 3

0 015 1 15 2‘ 2.5 3 0 015 1 15
tin hours tin hours
(b) Uniformly distributed random variable

(a) Gaussian distributed random variable
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A Turnpike Result for the Transport Eq. EAU

Non-Autonomous and Space-Variant Tp Eq

Consider the optimal control problem governed by an non-autonomous and space-variant transport equation

min  Jp(u) = /0 fu(®)) +g(r(t, L)) dt

ueL?(0,T)
st. r(t,x) 4+ ceri(t,z) = m(x) r(t,z) + b(z),
r(0, ) = 7Tini(x),
r(t,0) = u(?),
and its corresponding static problem

min  J(u) = f(u) + g(r(L))

us.t. cry(x) =m(x) r(z) + b(x),
r(0) = u.

= We can get an integral Turnpike result following the proof of the previous results.
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A Turnpike Result for the Transport Eq. EAU

Space- and Time-Variant Transport Equation

Consider the optimal control problem governed by an non-autonomous, space- and time-variant transport equation

min  Jp(u) = /0 f(u®)) +g(r(t, L)) dt

ueL?(0,T)
st. r(t,x) + cery(t,x) = mlt, x) r(t,x) + b(t, ),
r(0, ) = 7ini(x),
r(t,0) = u(?),

= Numerical simulations also provide a turnpike result, but the Turnpike is not given by a steady state problem but by
the corresponding optimal control problem with constant control.

min JT(u):/O fu(t)) +g(r(t,L)) dt

ueL?(0,T)
st. r(t,x)+cry(t,x) =m(t,z) r(t,x) + b(t, x),
r(0,z) = rin(z),
r(t,0) = u,
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A Turnpike Result for the Transport Eq. EAU
Optimal Control with Feedback Control

Consider the optimal control problem with feedback control from the beginning:

min  Jp(u) :/0 f(u(t),r(t, L)) dt

ueL?(0,T)
st. r(t,x) +cery(t,z) =mr(t,z),
r(0, ) = rini(x),
r(t,0) = u(t) - r(t, L),

A solution of the transport system is given by

( k—1 |
rini(kL + x — ct) exp(mt) [] u(t — ZL%) EL <ct<kL+x
Tk(ta 5!3) = 9 = k ,
rini((k + 1)L +x— ct) exp(mt) [] u(t — M%) kL+x<ct<(k+1)L
\ 1=0

= The turnpike is given by the corresponding optimal control problem with constant feedback control, but the proof is not
Clear.
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A Turnpike Result for the Transport Eq. EAU

A Semi-Linear Transport Equation

Consider an optimal boundary control problem with the transport equation nonlinear source term:

ueILI%i({)l,T) JT(u):/O fu(®)) +g(r(t, L)) dt

st r(t,x) +cry(t,x) = h(r(t ),
r(0,2) = rini(x),
r(t,0) = u(t).

N——"

A solution of the transport equation with nonlinear source term is given by

G~1 t—I—G(rini(x — ct) )) x> ct,

r(t,x) = )

G 2+G(ult—2) r<ct,

where G is an anti-derivative of 1/h.

= Numerical simulations also provide a turnpike result, but due to the nonlinear dependence of the control we cannot
directly get the derivative (work in progress).
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Optimal Boundary Control for the EAU
TransEort Eguation under Uncertaintx

[Sakamoto and Schuster, 2025]: A Turnpike Result for Boundary Control Problems governed by the Transport Equation
under Uncertainty. Under revision, Preprint available
https://opus4.kobv.de/opusd-trrib4/frontdoor/index/index/docId/509
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